

Welcome to Metrics’s documentation!

Contents

	mETRICS - rEproducible sofTware peRformance analysIs in perfeCt Simplicity
	Authors

	Why Metrics?

	Installation

	API
	Core

	Builder
	Attribute Manager

	Builder

	Typing Strategy

	Reading a Campaign into Metrics
	Metadata of the Campaign

	Description of the Campaign Files
	Parsing a CSV File

	Parsing an “Evaluation” File

	Parsing a “Reverse” CSV File

	Parsing Raw Data from a File Hierarchy

	Parsing Unsupported Formats

	Identifying Successful Experiments

	Description of the Data to Extract
	Extracting Data from Raw Files

	Extracting Data from File Names

	Extracting Data from Common Formats

	Mapping Data to Scalpel’s Expectations

	Adding Default Values

	Additional Information About the Campaign
	Description of the Experiment-Wares

	Description of the Inputs

	Analyze a Campaign in Metrics
	A Preview of What is Able to Do an Analysis

	Create/Import/Export a DecisionAnalysis
	The DecisionAnalysis Object

	Export and Import an Analysis

	Manipulate the Data from *Analysis
	Generate a New Information/Variable for Each Experiment

	Remove Variables from the Analysis

	Add an Analysis or a DataFrame to the current Analysis

	Add a Virtual Experiment-Ware

	Subset of *Analysis Rows

	Grouping the Analysis

	Draw Figures
	Static Tables

	Static Plots

	Dynamic Plots

	Advanced Usage

	Make an Optimality Analysis with OptiAnalysis
	Create an OptiAnalysis

	Compute scores

	Make figures

Indices and tables

	Index

	Module Index

	Search Page

mETRICS - rEproducible sofTware peRformance analysIs in perfeCt Simplicity

[image: License]
[image: PyPI - Python Version]
[image: PyPI - Status]
[image: Travis (.org)]
[image: Sonar Quality Gate]
[image: Sonar Coverage]

Authors

	Thibault Falque - Exakis Nelite

	Romain Wallon - CRIL, Univ Artois & CNRS [https://www.cril.univ-artois.fr/~wallon/en]

	Hugues Wattez - CRIL, Univ Artois & CNRS [https://www.cril.univ-artois.fr/~wattez]

Why Metrics?

Metrics is an open-source [https://github.com/crillab/metrics] Python
library and a web-app developed at CRIL [http://www.cril.fr] by the
WWF Team (Hugues Wattez [http://www.cril.fr/~wattez],
Romain Wallon [http://www.cril.fr/~wallon/en] and Thibault Falque),
designed to facilitate the conduction of experiments and their analysis.

The main objective of Metrics is to provide a complete toolchain from
the execution of software programs to the analysis of their performance.
In particular, the development of Metrics started with the observation
that, in the SAT community, the process of experimenting solver remains
mostly the same: everybody collects almost the same statistics about the
solver execution.
However, there are probably as many scripts as researchers in the domain
for retrieving experimental data and drawing figures.
There is thus clearly a need for a tool that unifies and makes easier the
analysis of solver experiments.

The ambition of Metrics is thus to simplify the retrieval of experimental data
from many different inputs (including the solver’s output), and provide a
nice interface for drawing commonly used plots, computing statistics about
the execution of the solver, and effortlessly organizing them.
In the end, the main purpose of Metrics is to favor the sharing and
reproducibility of experimental results and their analysis.

Towards this direction, Metrics’ web-app, a.k.a.
Metrics-Studio [http://crillab-metrics.cloud], allows to draw common figures,
such as cactus plots and scatter plots from CSV or JSON files so as to provide
a quick overview of the conducted experiments.
From this overview, one can then use locally the
Metrics’ library [https://pypi.org/project/crillab-metrics/] for a
fine-grained control of the drawn figures, for instance through the use of
Jupyter notebooks [https://jupyter.org/].

Installation

To execute Metrics on your computer, you first need to install
Python [https://www.python.org/downloads/] on your computer
(at least version 3.8).

As the metrics library is
available on PyPI [https://pypi.org/project/crillab-metrics/], you install it
using pip.

pip install crillab-metrics

Note that, depending on your Python installation, you may need to use pip3
to install it, or to execute pip as a module, as follows.

python3 -m pip install crillab-metrics

API

Core

.. automodule:: metrics.core.model
 :members:

Builder

Attribute Manager

.. automodule:: metrics.core.builder.attribute_manager
 :members:

Builder

.. automodule:: metrics.core.builder.builder
 :members:

Typing Strategy

.. automodule:: metrics.core.builder.typing_strategy
 :members:

Reading a Campaign into Metrics

To extract pieces of data from the campaign of experiments you ran and feed it
into Metrics, you need to use the Scalpel module of Metrics.
Scalpel stands for “extraCt dAta of exPeriments from softwarE Logs”
(sCAlPEL).

A campaign is basically read using the following:

from metrics.scalpel import read_campaign
my_campaign, my_configuration = read_campaign('path/to/campaign/file', log_level='WARNING')

Currently, two types of files can be given as input to Scalpel:

	a JSON file containing a serialized form of the campaign (when
you have already loaded your campaign in Metrics, and saved
it for later use), or

	a YAML file describing how to extract data from the campaign
you ran.

In the first case, there is almost nothing to do, as the JSON file generated
by Metrics already contains all the data needed by Scalpel (and the
returned configuration will thus be None).
In the second case, the following sections give more details on how to write
a configuration file that describes your campaign (the returned configuration
will be an object representation of this description).

Additionally, as you can see in the example above, a log_level parameter may
be specified to the function read_campaign().
This allows to configure the minimum level of the parsing events that should
be logged.
Available levels are, from the lowest to the highest:

	'TRACE'

	'DEBUG'

	'INFO'

	'WARNING' (this is the default level)

	'ERROR'

Parsing events are regularly logged by Scalpel to trace the extraction it
performs, mostly for debugging purposes.
For instance, activating a lower logging level may allow to identify why
some data is missing for a particular experiment.
However, it should be noted that Scalpel may become particularly verbose
when doing so, which may affect performance.
This is why this feature should only be activated for debugging purposes.

Metadata of the Campaign

In the YAML file, you first need to give elementary information about the
campaign, such as its name and the date on which it has been run.

name: my-awesome-campaign
date: 2020-11-17

This information is used to identify your campaign, and is particularly
interesting for the traceability of your experiments.

The YAML file must also contain the experimental setup on which the campaign
took place, as in the following example:

setup:
 os: Linux CentOS 7 (x86_64)
 cpu: Intel XEON X5550 (2.66 GHz, 8 MB cache)
 gpu: Nvidia GeForce 256 SDR
 ram: 32GB
 timeout: 1800
 memout: 1024

Note that, for the setup description, only timeout and memout are required.
The other values may be displayed in the reports generated by Metrics for
reproducibility purposes.

Description of the Campaign Files

Scalpel is able to parse a wide variety of files that contain the output
of the experiments you ran during your campaign.
All the information describing the source of your campaign must be given
in the source section of your YAML configuration file.
The main key of this section is path, which lists the file(s) containing
the data to extract.

source:
 path:
 - path/to/first/file
 - path/to/second/file

This key declares the list of the files (either regular files or directories,
depending on the format of your campaign) that Scalpel will parse.
Note that all files must have the same format.

All these files will be parsed sequentially, and their content will be merged
into a single campaign.
If these files represent distinct parts of your campaign (e.g., each file
contains the result of a different experiment-ware), you may be interested
in the extraction of metadata from the name of the file, described
here.

If you only have one file containing all the results of your campaign, you may
avoid the use of a list, and simply write the path of the file as the value
for path:

source:
 path: path/to/single/file

In the following subsections, we present what you must add to the source
field to configure Scalpel for parsing your campaign, depending on its
format.

Parsing a CSV File

The CSV (Comma-Separated Values) format is often used to store experimental
data.
It is mainly a tabular format, which has an (optional) header line giving
the titles of the column.
Each of the remaining lines corresponds to the data collected during an
experiment.

Depending on the variant, columns may be separated by:

	a comma (,), giving the default csv format,

	a semicolon (;), giving the csv2 format, or

	a tabulation (\t), giving the table format.

To specify that your campaign is in one of these formats, you need to add the
following to your YAML configuration file:

source:
 path: path/to/my/file.csv
 format: csv

Actually, the format may be omitted in this example, as the extension of
the file already tells Scalpel that the file is in the (classical) csv
format.
Similarly, if you specify as path the files path/to/my/file.csv2 or
path/to/my/file.table, you may omit the format, as Scalpel will infer
that such files use the csv2 and table formats, respectively.

You may also have more “exotic” CSV-like files, which do not use a standard
separator or quote character (by default, " is used as quote character).
If this is the case, you may describe them by adding the following keys
in the source section:

source:
 quote-char: "%"
 separator: "|"

In the example above, the quote character is % and the columns are
separated by the character |.

Finally, you may have a header for your CSV file, or not.
By default, the first line is considered as a header line, and is used
to identify the values parsed in the other lines as experimental data.
If you do not have a header line, add the following key:

source:
 has-header: false

In this case, values will be identified by the index of the corresponding
column, as a string (starting from "0").
Note that, in this case, Scalpel’s naming convention cannot be followed.
As such, do not forget to specify the mapping of the columns in the text file
to fit Scalpel’s needs (see below
for more details).
You must also do so as long as the name of the columns in your CSV files do not
fit Scalpel’s expectations.

Parsing an “Evaluation” File

If you are interested in analyzing the results of a campaign run with
the so-called “Evaluation” platform (such as, for instance, the
results of the XCSP’19 competition [http://www.cril.univ-artois.fr/XCSP19/],
we provide a parser to read the “results of individual jobs as text file”
provided by this platform (as the one of the XCSP’19 competition, available
here [http://www.cril.univ-artois.fr/XCSP19/results/export.php?idev=99]).

To do so, specify the following in your YAML configuration file:

source:
 path: path/to/result/file.txt
 format: evaluation

As this platform does not use in general the same naming convention as that of
Scalpel, do not forget to specify the mapping of the columns in the text file
to fit Scalpel’s needs (see below
for more details).

Parsing a “Reverse” CSV File

We call a CSV file “reverse” when each line in this file corresponds to an
input, and the columns to the different statistics collected for the
experiment-wares run during the campaign.
Here is an example of such a file:

xp-ware-a,xp-ware-b,xp-ware-c
0.01,0.02,0.03

In this example, we consider a campaign that run three experiment-wares, namely
xp-ware-a, xp-ware-b and xp-ware-c.
Each column is by default interpreted as the CPU time of the corresponding
experiment, as this is the only statistic required for an experiment.
Also, note that no input is specified in this example.
This is tolerated, as each line in such a format maps to exactly one input.
However, we strongly recommend specifying the name of the input file,
especially because it makes easier the interpretation of the experimental
results and their reproducibility.

A more complete example of a “reverse” CSV file is given below:

input,xp-ware-a.cpu_time,xp-ware-a.memory,xp-ware-b.cpu_time,xp-ware-b.memory,xp-ware-c.cpu_time,xp-ware-c.memory
input-a,0.01,10,0.02,20,0.03,30

Here, we collect more statistics, as we consider both the cpu_time and
memory needed for an experiment.
Those names are used to identify the corresponding statistics in the
representation of the experiment.
In the example above, the experiment-ware and the statistics identifiers
are separated with a dot (.), which is the default.
If you want to specify a different separator, you can specify it in the
YAML configuration as follows (make sure not to use the same separator
as for the columns):

source:
 title-separator: "!"

To configure how a reverse CSV file is parsed, you can also use the same
properties as those used in classical CSV file (see the previous section),
and specify one of the formats reverse-csv, reverse-csv2 or
reverse-table (using the same naming convention as before).

Parsing Raw Data from a File Hierarchy

If you have gathered the output of your experiment-wares in a directory,
Scalpel can explore the file hierarchy rooted at this directory and
extract all relevant data for you.
We support three different kinds of file hierarchies, which are described
below.

Note that, by default, Scalpel does not follow symlinks when
exploring a file hierarchy.
For each of the configurations below, you may alter this behavior by
adding the following to the source section of the YAML file:

source:
 follow-symlinks: true

One File per Experiment

In this case, the file hierarchy being explored is supposed to contain
exactly one (regular) file per experiment.
You can configure Scalpel to consider such a file hierarchy using the
following description:

source:
 path: /path/to/my-experiment-directory
 format: one-file

Let us consider an example to illustrate how Scalpel extracts data based on
this configuration.
Suppose that the file hierarchy to explore has the following form:

my-experiment-directory
 + experiment-a.log
 + experiment-b.log
 ` more-experiments
 + experiment-c.log
 ` experiment-d.log

Here, Scalpel will recursively explore the whole file hierarchy, and will
parse all regular files, provided that these files are specified in the data
section of the YAML configuration file (see the dedicated documentation
here for more details).
Each file experiment-a.log, experiment-b.log, experiment-c.log and
experiment-d.log will be considered as the output of a single experiment.

Note that these files may have common formats (such as JSON, XML or CSV) or
may also be the raw output of the solver.
More details on how to retrieve relevant information from these files
are given here.

Multiple Files per Experiment

In this case, the file hierarchy being explored is supposed to contain
a set of (regular) files per experiment.
The name of the files (without their extensions) will be used to identify
each experiment.
You can configure Scalpel to consider such a file hierarchy using the
following description:

source:
 path: /path/to/my-experiment-directory
 format: multi-files

Let us consider an example to illustrate how Scalpel extracts data based on
this configuration.
Suppose that the file hierarchy to explore has the following form:

my-experiment-directory
 + experiment-a.out
 + experiment-a.err
 + experiment-b.out
 + experiment-b.err
 ` more-experiments
 + experiment-c.out
 + experiment-c.err
 + experiment-d.out
 ` experiment-d.err

Here, Scalpel will recursively explore the whole file hierarchy, and will
parse all regular files, provided that these files are specified in the data
section of the YAML configuration file (see the dedicated documentation
here for more details).
In this case, the files experiment-a.out and experiment-a.err, for instance,
will be considered as outputs of the same experiment (they are both named
experiment-a).

Note that these files may have common formats (such as JSON, XML or CSV) or
may also be the raw output of the solver.
More details on how to retrieve relevant information from these files
are given here.

One Directory per Experiment

In this case, the file hierarchy being explored is supposed to have one
directory that contain the output files of each experiment.
The name of the files inside this directory may be arbitrary (and even the
same from one experiment to another).
You can configure Scalpel to consider such a file hierarchy using the
following description:

source:
 path: /path/to/my-experiment-directory
 format: dir

Let us consider an example to illustrate how Scalpel extracts data based on
this configuration.
Suppose that the file hierarchy to explore has the following form:

my-experiment-directory
 + experiment-a
 | + stdout
 | + stderr
 + experiment-b
 | + stdout
 | + stderr
 ` more-experiments
 + experiment-c
 | + stdout
 | + stderr
 ` experiment-d
 + stdout
 + stderr

Here, Scalpel will recursively explore the whole file hierarchy, and will
consider each directory containing regular files as an experiment.
All the regular files contained in this directory will thus be considered
as outputs of the corresponding experiments, as long as these files are
specified in the data section of the YAML configuration file (see the
dedicated documentation here for more
details).
For instance, the stdout and stderr files in the directory experiment-a
will be considered as output files of the experiment experiment-a, and will
thus be used together to extract relevant information for this experiment.

Note that these files may have common formats (such as JSON, XML or CSV) or
may also be the raw output of the solver.
More details on how to retrieve relevant information from these files
are given here.

Parsing Unsupported Formats

When developing Scalpel, we tried to think about as many campaign formats
as possible.
However, it may happen that you need to parse a campaign that uses a format
that is not recognized (yet) by Scalpel.
If this is the case you may write your own parser. by extending the class
CampaignParser.
This class must define a constructor taking as argument a
CampaignParserListener and a ScalpelConfiguration.
To give you ideas on how to write such a parser, you may have a look to the
source of our parsers [https://github.com/crillab/metrics/tree/master/metrics/scalpel/parser].

Then, add the class of your parser to your YAML configuration file as follows:

source:
 parser: my.completely.specified.AwesomeParser

Scalpel will dynamically instantiate your parser, and will then use it
to parse the campaign.
To make this possible, you will need to import your AwesomeParser
before invoking read_campaign(), to make sure that this class will be
reachable.

Remark

If you need to parse a campaign that uses an unsupported format, do not
hesitate to submit an issue, with an example of what you want to parse.
We will provide you some advices for writing your own parser.

We may also add a new feature to Scalpel by supporting this format,
either by writing a parser or by integrating yours if you agree to contribute
and submit a pull request.

Identifying Successful Experiments

When analyzing experimental results, it is often useful to identify which
experiments are successful and which are not.
By default, an experiment is considered as successful when it ended within
the time limit.
However, you may also want to perform additional checks to make sure that
an experiment succeeded (for instance, by checking that the output of
the experiment is correct).

To do so, you may add to your YAML configuration file an is-success
filter that allows to make such checks, as in the following example:

source:
 is-success:
 - ${success}
 - ${valueA} == ${valueB} or {valueC} == 0
 - ${result} in ['CORRECT', 'CORRECT TOO']

Let us describe the syntax of the filter in the example above.
First, is-success defines a list of conjunctively interpreted
Boolean expressions.
These expressions are themselves disjunctions of predicates.

Each predicate has to contain at least one variable, delimited using
${...}.
Such a variable corresponds to the identifier of an experimental data
read for a given experiment (for instance, the cpu_time of the experiment).

If the predicate contains only the variable (such as ${success}), then
this variable is interpreted as a Boolean value.
Otherwise, the predicate can use any comparison operator (among <, <=,
==, !=, >=, >) to compare the variable with either a literal
value (which can be a Boolean value, an integer, a float number or a
string) or another variable.
A predicate can also check that a variable is either contained in
a list of values (either literal values or variables) or contains a
value (either a literal value or a variable) using the in operator.
Lists are delimited using [...].

Remark

It is worth noting that Scalpel itself does not use is-success
to filter data, in the sense that even failed experiments are included
in the campaign it builds.

Instead, Scalpel passes this filter on to Wallet, so that the drawn
figures only take into account successful experiments.

Description of the Data to Extract

In order to extract data from the files of your campaign, you need to provide
a description of their content.
In the following, we describe how to write such a description.

Extracting Data from Raw Files

If your experiment-ware produces raw output, and you want Scalpel to parse it,
you can describe how to extract data from the corresponding files (which can
be given using wildcards or relative paths) by providing regular expressions,
as in the following example:

data:
 raw-data:
 - log-data: cpu_time
 file: "*.out"
 regex: 'overall runtime: (\d+.\d+) seconds'
 group: 1

In this case, when Scalpel reads a file with extension .out, it looks
for a line that matches the specified regular expression, and extracts the
cpu_time of the experiment from the group 1 (i.e. (\d+.\d+)) in this
regular expression.
In this case, the group could be omitted, as the value 1 is the default.

To make easier the description of raw data, Scalpel also recognizes
so-called simplified patterns, as illustrated in the following example:

data:
 raw-data:
 - log-data: cpu_time
 file: "*.out"
 pattern: "overall runtime: {real} seconds"

Observe that, here, pattern is used in place of regex, and that the
group (\d+.\d+) used in the previous example is replaced by {real}.
This syntax allows to use one of the different symbols used to represent
common data, and to avoid worrying about whitespaces (in a simplified
pattern, any whitespace is interpreted as a sequence of whitespace characters).

Scalpel can interpret the following symbols.

	{integer} for a (possibly signed) integer,

	{real} for a real number,

	{boolean} for a Boolean value (true or false, case-insensitive),

	{word} for a word (i.e., a sequence of letters, digits and _), and

	{any} for any sequence of characters (not greedy).

If the same line contains multiple relevant data, you can extract them
by giving names to the groups you specified (in this case, the value for
log-data may be omitted).

data:
 raw-data:
 - file: "*.out"
 pattern: "runtime: {real} seconds (cpu), {real} seconds (wallclock)"
 groups:
 cpu_time: 1
 wall_time: 2

Note that it is not possible to mix regular expressions and simplified
patterns.

Extracting Data from File Names

Depending on your setting, you may need to extract relevant information
from the name of the file to parse (for instance, the name of the
experiment-ware or that of the input).
This can be achieved through file-name-meta, as in the following
example:

data:
 file-name-meta:
 pattern: "{any}_{any}.log"
 groups:
 experiment_ware: 1
 input: 2

As for log-data, you may choose to use either regular expressions (regex)
or a simplified pattern.
The fields in groups are used to name the groups identifying relevant
data.

For instance, if the file my-xp-ware_my-input.log, the group 1 matches
with my-xp-ware, which is thus identified as the experiment_ware, while
the group 2 matches with my-input, which is thus identified as the
input.

As file hierarchies are explored through the file system, the paths of the
files that are encountered during this exploration are system-dependent
(in particular, the file separator may vary from one system to another).
Scalpel is able to dynamically adapt file separators used in the pattern
specified as file-name-meta to ensure cross-platform compatibility for your
configuration.
To make sure that this compatibility is applied, you must always use / as
file separator (even if it is not that of your system).

Extracting Data from Common Formats

If your output files use a common format (as JSON, CSV or XML), you do
not need to use raw-data to extract their value.
Instead, you just need to specify the name of such files as follows
(wildcards and relative paths are supported).

data:
 data-files:
 - "*.json"
 - "output.xml"

Note that Scalpel will be able to extract data from such files by inferring
automatically identifiers for the data it extracts.
In the case of CSV files, the identifiers that will be used is inferred
based on the header of the file.

For JSON and XML files, a “dotted” notation will be used.
For example, consider the following JSON output:

{
 "experiment": {
 "runtime": 123.4,
 "value": [24, 27, 42, 51, 1664]
 }
}

Scalpel will automatically identify the runtime as experiment.runtime and
the list of values as experiment.value.
The same identifiers are inferred for the following XML output:

<experiment runtime="123.4">
 <value>24</value>
 <value>27</value>
 <value>42</value>
 <value>51</value>
 <value>1664</value>
</experiment>

By default, all keys stored in a JSON or XML file are extracted by Scalpel,
and stored in the internal representation of the campaign.
This may be memory consuming, in particular if there are some keys that you
do not need.
To discard such keys, you may specify them in the field ignored-data in your
YAML configuration (this may actually be applied to any key defined by
the campaign).
For instance, the snippet below allows to discard the list experiment.value
described in the two examples above.

data:
 ignored-data:
 - experiment.value

If needed, you can also configure the parser to use for reading data from
data-files, as in the following example:

data:
 data-files:
 - name: "*.json"
 format: json
 name-as-prefix: true
 - name: "*.csv"
 format: csv
 has-header: false
 separator: " "
 name-as-prefix: true
 - name: "*.txt"
 parser: my.completely.specified.AwesomeParser

Observe in the example above that CSV files may be configured as for
CSV campaigns (the same fields are used to describe the format of the file).

For each data-file, you can also set name-as-prefix to true, so that
each field in the file will be prefixed by the name of the file, using a
dotted notation.
This is particularly useful whe the same key appears in different files.

Moreover, it is also possible to specify a custom parser, provided you
give the completely specified name of this class.
This parser must extend CampaignOutputParser, and its constructor must take
as input a CampaignParserListener, a ScalpelConfiguration, the path of the
file to parse and its name.

Finally, you may face some cases where the wildcards you use for declaring data
files (or even log-data) are too generic.
To ignore some files that still match these wildcards, you may specify the
files to ignore with the field ignored-files (wildcards and relative paths are
supported).
For example, the snippet below allows to ignore some JSON files.

data:
 ignored-files:
 - "*ignore*.json"

Mapping Data to Scalpel’s Expectations

When parsing an experiment, Scalpel expects to find the required
information to describe the result of this experiment.
The identifier of such data is thus crucial to allow Scalpel to build
consistent experiments.
This is in particular true for the identifiers:

	experiment_ware, which is the experiment-ware run in a given experiment,

	input, which is the input on which the experiment-ware has been run, and

	cpu_time, which is the runtime of the experiment.

If these identifiers are not specified in your campaign files (for instance,
you have a CSV file in which the header does not use these names), you need
to tell Scalpel how to map your experimental data to the expected identifiers.
This can be achieved by specifying a mapping as in the following example:

data:
 mapping:
 experiment_ware:
 - program
 - options
 cpu_time: runtime
 input: file
 file: path

In this example, we have that, for each experiment, the data read as runtime
will be interpreted as cpu_time and file as input.

Note that, for experiment_ware, two identifiers are specified.
In this case, the data read as program and options will be concatenated
(in this order) to build up the identifier of the experiment-ware.
Moreover, if this experiment-ware does not exist yet, an object representation
of this experiment-ware will be instantiated, using program and options
has two additional fields.

Finally, observe that path is mapped to file, which is itself mapped to
input.
In this case, a recursive mapping is actually applied on path, which will
be eventually interpreted as input while parsing the campaign.
Recursive mapping is the recommended approach for mapping several identifiers
to the same key.

Remark

This mapping is mainly designed to map custom identifiers to Metrics’
naming conventions.
However, you can also use this mapping to rename other data (especially when
their identifiers are automatically inferred by Scalpel), or to group
together data that are separated in your campaign files.

Adding Default Values

Sometimes, it may happen that some data are missing in your experiment files,
either because some experiment-wares did not output them correctly, or did not
have enough time to output them within the time limit.
This may be a problem if this data is required by Scalpel.
For such data, you may provide default values as follows:

data:
 default-values:
 cpu_time: 1800

In this example, we have set the default cpu_time to the same value as the
time limit (note that this is done by default by Scalpel).
You may set default values for any key of the campaign, and even for
“partial keys” (i.e., those that are part of a mapping).

Additional Information About the Campaign

When collecting data about a campaign, you may want to add relevant
information that do not appear in the files produced during the
execution of your experiments regarding its settings.
This section presents how you can describe the experiment-wares and
inputs you used for your experiments.

Description of the Experiment-Wares

Optionally, you may provide a description of the experiment-wares (i.e., the
software programs you ran during your campaign).
By default, experiment-wares are automagically instantiated when encountered
during the parsing of your campaign files.

However, you may want to specify additional data w.r.t. the programs you
experimented (for instance, the version of the software, the command line
options passed to the program that was executed, etc.).

As such data may not appear in your campaign files, you can specify them
in the YAML configuration as follows:

experiment-wares:
 - name: my-awesome-xpware
 version: 0.1.0
 command-line: ./my-awesome-xpware -o option
 - name: my-great-xpware
 commit-sha: abcd1234
 command-line: ./my-great-xpware -v value

When you specify information about experiment-wares, only their names are
required.
The name of an experiment-ware must uniquely identify this experiment-ware
in the campaign, and must match the one that Scalpel will extract from
your campaign files.
For all other information you specify, you may use any key you want to
identify this information.

Also, note that you are not required to use the same keys for all
experiment-wares.
You may also omit experiment-wares for which you do not need more information
than those mentioned in the campaign files: these experiment-wares will
simply be discovered when parsing the files.

Moreover, you may simply specify the list of the experiment-wares used
in the campaign:

experiment-wares:
 - my-awesome-xpware
 - my-great-xpware

Doing so is rarely useful, as the name of the experiment-wares must necessarily
be mentioned in the campaign files, and thus will be discovered during their
parsing.
However, this may be helpful to remind you that some experiments are missing,
for instance, if you do not have run all experiment-wares yet.

Description of the Inputs

As for experiment-wares, you may want to add data about the inputs of your
experiments.
This is achieved by defining an input-set in your YAML configuration file,
and giving it a proper name, as in the following example:

input-set:
 name: my-awesome-input-set
 type: list
 files:
 - path: path/to/instanceA.cnf
 family: F1
 - path: path/to/instanceB.cnf
 family: F2

In this example, files allows to list all the inputs you used in your
experiments.
As for experiment-wares, you may specify as many data as you want for your
inputs.
You may also use different keys for these data, and omit input files when
you do not need to add more information than that provided in the campaign
files.
The only required key is path.

In the example above, observe that the type list is declared, to specify
that all relevant information are specified in files.

Another possible type is file-list, if you only list the path of the
files (in which case, you do not need to specify the path key).
You may also use file if this list is written in a separate file (one
path per line), in which case the files must give the list of the
files to read.

Finally, you may also specify a hierarchy type, in which case Scalpel
will explore a file hierarchy to find all input files from the file
hierarchy rooted at the directory specified in files, as in the following
example:

input-set:
 name: my-awesome-input-set
 type: hierarchy
 extensions: ".cnf"
 files: /path/to/my/benchmarks
 file-name-meta:
 pattern: /path/to/my/benchmarks/{any}/{any}.cnf
 groups:
 family: 1
 name: 2

Note that, in this example, the input files that are considered are
those stored in the file hierarchy rooted at the directory
/path/to/my/benchmarks, and having a .cnf extension (you may
also specify a list of extensions if you have more than one).

Also, observe that a file-name-meta section is specified, with the
same syntax as that described here.
It allows extracting relevant information from the name of each input.

Both extensions and file-name-meta are taken into account for
any type of input-sets.

Analyze a Campaign in Metrics

Once the YAML file is correctly configured (Reading a Campaign into Metrics), the analysis of data can started.
To analyze the campaign of experiments thanks to Metrics,
you need to use the Wallet module of Metrics.
Wallet stands for “Automated tooL for expLoiting Experimental resulTs”
(wALLET).

To manipulate data, Wallet uses a pandas Dataframe [https://pandas.pydata.org/].
A dataframe is a table composed of rows corresponding to experimentations (also denoted as observations) and columns corresponding to the variables/metrics of an experimentation.

It is not necessary to have wide knowledge about this library to manipulate Wallet data but in order to have a better idea on how data are manipulated, an example of a classical analysis dataframe is given:

	

	input

	experiment_ware

	cpu_time

	0

	XCSP17/AllInterval/AllInterval-m1-s1/AllInterval-035.xml

	BTD 19.07.01

	0.031203

	1

	XCSP17/AllInterval/AllInterval-m1-s1/AllInterval-035.xml

	choco-solver 2019-09-16

	1.51053

	2

	XCSP17/AllInterval/AllInterval-m1-s1/AllInterval-035.xml

	choco-solver 2019-09-20

	1.52427

	3

	XCSP17/AllInterval/AllInterval-m1-s1/AllInterval-035.xml

	choco-solver 2019-06-14

	1.60424

	4

	XCSP17/AllInterval/AllInterval-m1-s1/AllInterval-035.xml

	AbsCon 2019-07-23

	3.65329

For the next, the documentation focuses on the analysis of a CSP solver competition (XCSP’19 [http://www.cril.univ-artois.fr/XCSP19/]).

A Preview of What is Able to Do an Analysis

[image: Class diagram of an *Analysis]

Globally, an *Analysis object is composed of five parts:

	getters to get basical objects from the analysis

	checkers that permit to check many important information about the analysis

	manipulations that permit to manipulate the state of the analysis

	figures that permit to draw some tables and plots representing the data

	others that correspond to operations like exporting.

Here, an analysis is divided in three different objects:

	BasicAnalysis is an analysis with the only constraint of a complete cartesian product between inputs and experiment-wares

	DecisionAnalysis is an analysis taking into account the time and the success, or not, of each experiment

	OptiAnalysis is an analysis of an optimality problem taking into account the list of bound and timestamps, and the success, or not, of each experiment

A BasicAnalysis could be used openly without the constraint of success, time, or bound list information.

In this tutorial, we firstly focus on a DecisionAnalysis with the inherited methods from a BasicAnalysis.

A final part focuses on the optimality analysis of the object OptiAnalysis.

Create/Import/Export a DecisionAnalysis

The DecisionAnalysis Object

To create a new analysis, you only need to import the DecisionAnalysis class from Wallet module and instantiate a new DecisionAnalysis object with the path to the YAML configuration file:

from metrics.wallet import DecisionAnalysis

analysis = DecisionAnalysis(input_file='path/to/xcsp19/YAML/file')

In the constructor above, it is possible to specify a log_level that will
be passed to Scalpel to log parsing events.

The analysis is composed of many variables describing the experiments:

	necessary ones: input, experiment_ware, cpu_time, timeout

	optional ones (given by the current competition file): Category, Checked answer, Objective function, Wallclock time, Memory, Solver name, Solver version.

These variables permit to check the consistency and the validity of information. Some methods, called checkers, permit to operate some basic operations:

	<analysis>.check_success(<lambda>): given a lambda, this method permits to check if an experiment is a success or not (this method is automatically executed when the user has informed it in the Scalpel file);

	<analysis>.check_missing_experiments(): this method is automatically called by the *Analysis constructor to replace missing experiments by unsuccessful experiments;

	<analysis>.check_xp_consistency(<lambda>): given a lambda, this method permits to check the consistency for each experiment;

	<analysis>.check_input_consistency(<lambda>): given a lambda, this method permits to check the consistency for each input (composed of many experiments); it asks some basic knowledge on DataFrame manipulation (an example is given by the next).

check_success and check_missing_experiments are automatically called during the *Analysis constructor call. After, the user could (re-)check these success and consistency methods as follow:

inconsistent_returns = {
 'ERR WRONGCERT', 'ERR UNSAT'
}

successful_returns = {'SAT', 'UNSAT'}

is_consistent_by_xp = (lambda x: not x['Checked answer'] in inconsistent_returns)
is_consistent_by_input = (lambda df: len(set(df['Checked answer'].unique()) & successful_returns) < 2)
is_success = (lambda x: x['Checked answer'] in successful_returns)

analysis.check_success(is_success)
analysis.check_input_consistency(is_consistent_by_input)
analysis.check_xp_consistency(is_consistent_by_xp)

The *Analysis construction warns the user when inconsistencies are found, missing data, …:

1 experiment is missing and has been added as unsuccessful.
4 experiments are inconsistent and are declared as unsuccessful.
1 input is inconsistent and linked experiments are now declared as unsuccessful.

The analysis creates also its own variables corresponding to the previous checkings: error, success, missing	consistent_xp and consistent_input.

It exists another way to build an analysis that is presented in the Advanced Usage section.

Export and Import an Analysis

At any moment, the analysis could be exported to save its state into a file:

analysis.export('analysis.csv')

An analysis could be exported as a csv (as a DataFrame representation) if the .csv extension is used, else the analysis is exported as a binary object.

To import an analysis from a file, the function import_analysis_from_file may be used:

imported_analysis = DecisionAnalysis.import_from_file(filepath)

You can observe an example of these functions in this notebook [https://github.com/crillab/metrics/blob/master/example/example/xcsp-19/create_analysis.ipynb].

Manipulate the Data from *Analysis

Before producing the first figures, Wallet proposes to manipulate the different experiments composing the dataframe.
It allows to analyze more finely the campaign.

Generate a New Information/Variable for Each Experiment

Wallet can add new information to the underlying dataframe by giving a function/lambda to a mapping method of BasicAnalysis. For the next example, the input name corresponds to the path of the input (e.g., /XCSPxx/family/.../input-parameters.xcsp). It could be interesting to extract the family name to use it in the rest of the analysis. For this, the method add_variable() from BasicAnalysis:

import re
family_re = re.compile(r'^XCSP\d\d/(.*?)/')

new_analysis = analysis.add_variable(
 new_var='family',
 function=lambda x: family_re.match(x['input']).group(1)
)

add_variable() takes as first parameter the name of the future created column, and as second parameter the lambda that applies the regular expression family_re to the variable input of the row x (the regular expression returns an object corresponding to the matching strings: .group(1) permits to retrieve the family name of the input).

The result (as a sample of 5 experiments with the only 2 interesting columns shown) is:

	

	input

	family

	3641

	XCSP17/Primes/Primes-m1-p25/Primes-25-80-2-7.xml

	Primes

	2992

	XCSP17/MaxCSP/MaxCSP-maxclique-s1/MaxCSP-brock-800-2.xml

	MaxCSP

	2956

	XCSP17/MagicSquare/MagicSquare-sum-s1/MagicSquare-13-sum.xml

	MagicSquare

	7106

	XCSP18/GracefulGraph/GracefulGraph-K05-P02_c18.xml

	GracefulGraph

	4423

	XCSP17/QRandom/QRandom-mdd-7-25-5/mdd-7-25-5-56-09.xml

	QRandom

Thanks to this method, the user is also able to update existing columns (e.g., renaming the experiment-wares to simplify their names).

You can observe an example of this command in this notebook [https://github.com/crillab/metrics/blob/master/example/xcsp-19/create_analysis.ipynb].

Remove Variables from the Analysis

Sometimes, some analysis information are not useful: it could be interesting to simplify and lighten the dataframe (e.g., when we need to export the analysis in a lighter format). To do this:

analysis.remove_variables(
 vars=['Category', 'Objective function']
)

where vars parameter take the list of variables to remove.

Add an Analysis or a DataFrame to the current Analysis

When many campaigns needs to be compared and two analysis a1 and a2 have been created, it is possible de merge them:

a3 = a1.add_analysis(a2)

The user has to be careful to merge consistent data: the new analysis needs to contain the Cartesian product of the available inputs in its dataframe with the experiment-wares. To ensure this and the consistency of its analysis, the user can also apply the lambda as described for the Analysis construction.

In the same way, it is possible to append the analysis with a consistent dataframe:

a3 = a1.add_data_frame(a2.data_frame)

Add a Virtual Experiment-Ware

Sometimes, it may be interesting to introduce what we call a Virtual Experiment-Ware (VEW), which generalizes the well-known Virtual Best Solver (VBS).
It allows to compare our current experiment-wares to the virtual (best) one. A VBEW (Virtual Best Experiment-Ware) selects the best experiment for each input from a selection of real experiment-ware thanks to the function find_best_cpu_time_input:

from metrics.wallet import find_best_cpu_time_input

analysis_plus_vbs = analysis.add_virtual_experiment_ware(
 function=find_best_cpu_time_input,
 xp_ware_set=None, # None corresponds to the all available experiment-wares of the analysis
 name='my_best_solver'
)

Here, we create a VBEW named my_best_solver and based on the best performances of the overall set of experiment-wares. my_best_solver will receive the result of one of these experiment-wares minimizing the cpu_time column.

find_best_cpu_time_input is a function using some basic knownledge about dataframe. As an example, find_best_cpu_time_input representation is shown:

def find_best_cpu_time_input(df):
 s = df['cpu_time']
 return df[s == s.min()]

find_best_cpu_time_input receives a dataframe composed of the experiments composing a given input. It finds the minimal cpu_time value and returns the row corresponding to this best time.

You can observe an example of this method in this notebook [https://github.com/crillab/metrics/blob/master/example/example/xcsp-19/create_analysis.ipynb].

Subset of *Analysis Rows

*Analysis is also able to make a subset of its experiments.

By Filtering Inputs

By default, it exists some useful subset methods in *Analysis object to filter inputs (and linked experiments):

	keep_common_failed_inputs(): returns a new *Analysis with only the common failed experiments. It corresponds to inputs for which no experiment-ware has succeeded;

	keep_common_solved_inputs(): returns a new *Analysis with only the common successful experiments. It corresponds to inputs for which no experiment-ware has failed;

	delete_common_failed_inputs(): returns a new *Analysis where commonly failed inputs are removed;

	delete_common_solved_inputs(): returns a new *Analysis where commonly succeeded inputs are removed.

Finally, we present a last and generic method to make a subset of inputs:

analysis.filter_inputs(
 function=<lambda>,
 how=<"all"|"any">
)

The filter_inputs method takes two parameters:

	function corresponds to a True/False lambda that says if an experiment (from input experiments) is acceptable or not

	how corresponds to the need to have at least one or all the experiments from input acceptables.

As examples, we show how the four default methods are set with this generic one:

	Default method

	Implementation

	delete_common_failed_inputs

	analysis.filter_inputs(function=lambda x: x['success'], how='any')

	delete_common_solved_inputs

	analysis.filter_inputs(function=lambda x: not x['success'], how='any')

	keep_common_failed_inputs

	analysis.filter_inputs(function=lambda x: not x['success'], how='all')

	keep_common_solved_inputs

	analysis.filter_inputs(function=lambda x: x['success'], how='all')

You can observe an example of this subset in this notebook [https://github.com/crillab/metrics/blob/master/example/example/xcsp-19/create_analysis.ipynb].

By Filtering Experiments

Analysis permits also to precise what are the experiments that the user wants to filter:

analysis_no_para = analysis.filter_analysis(
 function=lambda x: 'parallel' not in x['experiment_ware']
)

The previous example permits to remove all the solvers containing the term parallel in its title.

Derived from this previous generic method, some default actions are also existing:

	Default method

	Implementation

	remove_experiment_wares(<set>)

	analysis.filter_analysis(lambda x: x[EXPERIMENT_XP_WARE] not in experiment_wares)

	keep_experiment_wares(<set>)

	analysis.filter_analysis(lambda x: x[EXPERIMENT_XP_WARE] in experiment_wares)

Grouping the Analysis

To group the analysis into specific analysis, two more methods are presented: the classical groupby method and another one to group experiment-wares by pairs.

groupby Operator

The groupby operator allows to create a list of new *Analysis instances grouped by a column value. For example, if we have the family name family of inputs in the dataframe, it could be interesting to make separated analysis of each of them:

for sub_analysis in analysis.groupby('family'):
	print(sub_analysis.description_table())

These previous lines will describe the analysis of each family of my_analysis.

Pairs of Experiment-wares

To compare more precisely the overall pairs of experiment-wares, a method is implemented to return the corresponding analysis:

for sub_analysis in analysis.all_experiment_ware_pair_analysis():
	print(sub_analysis.description_table())

Draw Figures

After having built the analysis and manipulated the data we want to highlight, we can start drawing figures. Thanks to Wallet, we are able to build two kinds of plots: static and dynamic.

Wallet permits to draw static plots and computing tables showing different statistic measures. These figures can easily be exported in a format specified by the user, such as LaTeX for tables and PNG or vectorial graphics (such as SVG or EPS) for plots. Static plots are highly configurable in order to fit in their final destination (e.g., in slides or articles).

Static Tables

Each table that will be described hereafter are exportable into the LaTeX format. In addition to this transformation, it is possible to personnalize the the number pattern:

	dollars_for_number puts numbers in math mode (for LaTeX outputs);

	commas_for_number splits numbers with commas in math mode (for LaTeX outputs).

Each table generated are observable in this notebook [https://github.com/crillab/metrics/blob/master/example/example/xcsp-19/tables_from_analysis.ipynb].

Describe the Current Analysis

Before manipulating the analysis, it could be interesting to describe it:

analysis.description_table()

which yields the following:

	

	analysis

	n_experiment_wares

	13

	n_inputs

	300

	n_experiments

	3900

	n_missing_xp

	0

	n_inconsistent_xp

	2

	n_inconsistent_xp_due_to_input

	0

	more_info_about_variables

	.data_frame.describe(include=’all’)

 Index

Index

 GNU Lesser General Public License

GNU Lesser General Public License

Version 3, 29 June 2007
Copyright (c) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms
and conditions of version 3 of the GNU General Public License, supplemented by
the additional permissions listed below.

0. Additional Definitions

As used herein, “this License” refers to version 3 of the GNU Lesser General
Public License, and the “GNU GPL” refers to version 3 of the GNU General Public
License.

“The Library” refers to a covered work governed by this License, other than an
Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the
Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode of using
an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application
with the Library.
The particular version of the Library with which the Combined Work was made is
also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding
Source for the Combined Work, excluding any source code for portions of the
Combined Work that, considered in isolation, are based on the Application, and
not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code
and/or source code for the Application, including any data and utility programs
needed for reproducing the Combined Work from the Application, but excluding
the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL

You may convey a covered work under sections 3 and 4 of this License without
being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions

If you modify a copy of the Library, and, in your modifications, a facility
refers to a function or data to be supplied by an Application that uses the
facility (other than as an argument passed when the facility is invoked), then
you may convey a copy of the modified version:

	a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the function or
data, the facility still operates, and performs whatever part of its purpose
remains meaningful, or

	b) under the GNU GPL, with none of the additional permissions of this
License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files

The object code form of an Application may incorporate material from a header
file that is part of the Library.
You may convey such object code under terms of your choice, provided that, if
the incorporated material is not limited to numerical parameters, data
structure layouts and accessors, or small macros, inline functions and
templates (ten or fewer lines in length), you do both of the following:

	a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are covered by this
License.

	b) Accompany the object code with a copy of the GNU GPL and this license
document.

4. Combined Works

You may convey a Combined Work under terms of your choice that, taken together,
effectively do not restrict modification of the portions of the Library
contained in the Combined Work and reverse engineering for debugging such
modifications, if you also do each of the following:

	a) Give prominent notice with each copy of the Combined Work that the
Library is used in it and that the Library and its use are covered by this
License.

	b) Accompany the Combined Work with a copy of the GNU GPL and this
license document.

	c) For a Combined Work that displays copyright notices during execution,
include the copyright notice for the Library among these notices, as well as
a reference directing the user to the copies of the GNU GPL and this license
document.

	d) Do one of the following:

	0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form suitable for, and
under terms that permit, the user to recombine or relink the Application
with a modified version of the Linked Version to produce a modified
Combined Work, in the manner specified by section 6 of the GNU GPL for
conveying Corresponding Source.

	1) Use a suitable shared library mechanism for linking with the
Library.
A suitable mechanism is one that (a) uses at run time a copy of the
Library already present on the user’s computer system, and (b) will
operate properly with a modified version of the Library that is
interface-compatible with the Linked Version.

	e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the GNU GPL, and
only to the extent that such information is necessary to install and execute
a modified version of the Combined Work produced by recombining or relinking
the Application with a modified version of the Linked Version.
(If you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application Code.
If you use option 4d1, you must provide the Installation Information in
the manner specified by section 6 of the GNU GPL for conveying Corresponding
Source.)

5. Combined Libraries

You may place library facilities that are a work based on the Library side by
side in a single library together with other library facilities that are not
Applications and are not covered by this License, and convey such a combined
library under terms of your choice, if you do both of the following:

	a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities, conveyed under
the terms of this License.

	b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License

The Free Software Foundation may publish revised and/or new versions of the GNU
Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number.
If the Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License “or any later version” applies to it,
you have the option of following the terms and conditions either of that
published version or of any later version published by the Free Software
Foundation.
If the Library as you received it does not specify a version number of the GNU
Lesser General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether
future versions of the GNU Lesser General Public License shall apply, that
proxy’s public statement of acceptance of any version is permanent
authorization for you to choose that version for the Library.

 Documentation of METRICS

Documentation of METRICS

`̀̀``

cd root_dir_metrics
export PYTHONPATH=”$PYTHONPATH:$PWD:$PWD/venv/bin”
cd docs
make html
(xdg-open | open) build/html/index.html

 <no title>

 crillab-metrics

_images/analysis_uml.png
. DecisionAnalysis

figures:

stat_table(.)

© confribution_table(..)

© cactus_plot(")

© cdt_piot(.)

© scafter_piot(..)
ox_plot..)

manipulations
© compute_scores(.)

figures
© opt_line_plotf..)

inputs
experiment_wares.

coo

checkers.
check_success(..)
check missing_experimentsf..)
check xp_consistency(..)
checkCinput_consistency(..)

manipulations:
add_variable(..)
remove_variables(..)
add_analysis(..)
add_data, frame(..)
addvirtual_experiment_ware(..)

o fiter_analysisi..)
Lrermove_experiment wares(.)
© Lkeep_erpenment wares()

© filter_inputs(..)

L A T T i)
L delete_common’solved, inputsi..)
Lkeep. common, fafled Inputs(.)
& ke common_solved impursi)

© all_experiment ware_pair_analysis(..)
© groupbyl..)

figures:
description table(..)
error_tablel..)
pivot_table()
line_plot(..)

others-
°

export(.)
import

_images/table_cop.png
560383

560384

560385

560386

560387

input

AircraftLanding-
airland01

AircraftLanding-
airland01

AircraftLanding-
airland01

AircraftLanding-
airland01

AircraftLanding-
airland01

Warehouse-
cap131

Warehouse-
cap131

Warehouse-
cap131

Warehouse-
cap131

Warehouse-
cap131

experiment_ware

def_IcO

def_IcO

def_IcO

def_IcO

def_IcO

luby_lc2

luby_lc2

luby_lc2

luby_lc2

luby_lc2

cpu_time

0.00

0.85

0.85

0.85

0.85

2352.00

2364.00

2376.00

2388.00

2400.00

best_bound

NaN

-70000.0

-70000.0

-70000.0

-70000.0

-919715.0

-919715.0

-919715.0

-919715.0

-919715.0

status

INCOMPLETE

COMPLETE

COMPLETE

COMPLETE

COMPLETE

INCOMPLETE

INCOMPLETE

INCOMPLETE

INCOMPLETE

INCOMPLETE

exception

None

None

None

None

None

None

None

None

None

None

timeout

12

24

36

48

2352

2364

2376

2388

2400

success

False

True

True

True

True

False

False

False

False

False

nav.xhtml

 Table of Contents

 		
 Welcome to Metrics’s documentation!

 		
 mETRICS - rEproducible sofTware peRformance analysIs in perfeCt Simplicity

 		
 Authors

 		
 Why Metrics?

 		
 Installation

 		
 API

 		
 Core

 		
 Builder

 		
 Attribute Manager

 		
 Builder

 		
 Typing Strategy

 		
 Reading a Campaign into Metrics

 		
 Metadata of the Campaign

 		
 Description of the Campaign Files

 		
 Parsing a CSV File

 		
 Parsing an “Evaluation” File

 		
 Parsing a “Reverse” CSV File

 		
 Parsing Raw Data from a File Hierarchy

 		
 Parsing Unsupported Formats

 		
 Identifying Successful Experiments

 		
 Description of the Data to Extract

 		
 Extracting Data from Raw Files

 		
 Extracting Data from File Names

 		
 Extracting Data from Common Formats

 		
 Mapping Data to Scalpel’s Expectations

 		
 Adding Default Values

 		
 Additional Information About the Campaign

 		
 Description of the Experiment-Wares

 		
 Description of the Inputs

 		
 Analyze a Campaign in Metrics

 		
 A Preview of What is Able to Do an Analysis

 		
 Create/Import/Export a DecisionAnalysis

 		
 The DecisionAnalysis Object

 		
 Export and Import an Analysis

 		
 Manipulate the Data from *Analysis

 		
 Generate a New Information/Variable for Each Experiment

 		
 Remove Variables from the Analysis

 		
 Add an Analysis or a DataFrame to the current Analysis

 		
 Add a Virtual Experiment-Ware

 		
 Subset of *Analysis Rows

 		
 Grouping the Analysis

 		
 Draw Figures

 		
 Static Tables

 		
 Static Plots

 		
 Dynamic Plots

 		
 Advanced Usage

 		
 Make an Optimality Analysis with OptiAnalysis

 		
 Create an OptiAnalysis

 		
 Compute scores

 		
 Make figures

_static/file.png

_images/table_cop_2.png
opti dominance norm_bound borda opti_less_def dominance_less_def norm_bound_less_def borda_less_def
0 0 0.000000 0.000000 0 0 0.000000 0.000000
1 1 1.000000 1.631439 0 0 0.000000 0.120805
1 1 1.000000 1.631439 0 0 0.