
Metrics
Release 1.2.6

Hugues Wattez, Romain Wallon, Thibault Falque

Jun 06, 2023

CONTENTS

1 mETRICS - rEproducible sofTware peRformance analysIs in perfeCt Simplicity 1
1.1 Authors . 1
1.2 Why Metrics? . 1

2 Installation 3

3 API 5
3.1 Core . 5
3.2 Builder . 5

3.2.1 Attribute Manager . 5
3.2.2 Builder . 5
3.2.3 Typing Strategy . 5

4 Reading a Campaign into Metrics 7
4.1 Metadata of the Campaign . 8
4.2 Description of the Campaign Files . 8

4.2.1 Parsing a CSV File . 9
4.2.2 Parsing an “Evaluation” File . 9
4.2.3 Parsing a “Reverse” CSV File . 10
4.2.4 Parsing Raw Data from a File Hierarchy . 10
4.2.5 Parsing Unsupported Formats . 12
4.2.6 Identifying Successful Experiments . 13

4.3 Description of the Data to Extract . 14
4.3.1 Extracting Data from Raw Files . 14
4.3.2 Extracting Data from File Names . 15
4.3.3 Extracting Data from Common Formats . 15
4.3.4 Mapping Data to Scalpel’s Expectations . 17
4.3.5 Adding Default Values . 17

4.4 Additional Information About the Campaign . 18
4.4.1 Description of the Experiment-Wares . 18
4.4.2 Description of the Inputs . 18

5 Analyze a Campaign in Metrics 21
5.1 A Preview of What is Able to Do an Analysis . 22
5.2 Create/Import/Export a DecisionAnalysis . 23

5.2.1 The DecisionAnalysis Object . 23
5.2.2 Export and Import an Analysis . 24

5.3 Manipulate the Data from *Analysis . 24
5.3.1 Generate a New Information/Variable for Each Experiment 25
5.3.2 Remove Variables from the Analysis . 25

i

5.3.3 Add an Analysis or a DataFrame to the current Analysis . 26
5.3.4 Add a Virtual Experiment-Ware . 26
5.3.5 Subset of *Analysis Rows . 27
5.3.6 Grouping the Analysis . 28

5.4 Draw Figures . 29
5.4.1 Static Tables . 29
5.4.2 Static Plots . 33
5.4.3 Dynamic Plots . 38

5.5 Advanced Usage . 38
5.6 Make an Optimality Analysis with OptiAnalysis . 39

5.6.1 Create an OptiAnalysis . 39
5.6.2 Compute scores . 40
5.6.3 Make figures . 41

6 Indices and tables 43

ii

CHAPTER

ONE

METRICS - REPRODUCIBLE SOFTWARE PERFORMANCE ANALYSIS
IN PERFECT SIMPLICITY

1.1 Authors

• Thibault Falque - Exakis Nelite

• Romain Wallon - CRIL, Univ Artois & CNRS

• Hugues Wattez - CRIL, Univ Artois & CNRS

1.2 Why Metrics?

Metrics is an open-source Python library and a web-app developed at CRIL by the WWF Team (Hugues Wattez, Romain
Wallon and Thibault Falque), designed to facilitate the conduction of experiments and their analysis.

The main objective of Metrics is to provide a complete toolchain from the execution of software programs to the analysis
of their performance. In particular, the development of Metrics started with the observation that, in the SAT community,
the process of experimenting solver remains mostly the same: everybody collects almost the same statistics about the
solver execution. However, there are probably as many scripts as researchers in the domain for retrieving experimental
data and drawing figures. There is thus clearly a need for a tool that unifies and makes easier the analysis of solver
experiments.

The ambition of Metrics is thus to simplify the retrieval of experimental data from many different inputs (including
the solver’s output), and provide a nice interface for drawing commonly used plots, computing statistics about the
execution of the solver, and effortlessly organizing them. In the end, the main purpose of Metrics is to favor the sharing
and reproducibility of experimental results and their analysis.

Towards this direction, Metrics’ web-app, a.k.a. Metrics-Studio, allows to draw common figures, such as cactus plots
and scatter plots from CSV or JSON files so as to provide a quick overview of the conducted experiments. From this
overview, one can then use locally the Metrics’ library for a fine-grained control of the drawn figures, for instance
through the use of Jupyter notebooks.

1

https://www.cril.univ-artois.fr/~wallon/en
https://www.cril.univ-artois.fr/~wattez
https://github.com/crillab/metrics
http://www.cril.fr
http://www.cril.fr/~wattez
http://www.cril.fr/~wallon/en
http://www.cril.fr/~wallon/en
http://crillab-metrics.cloud
https://pypi.org/project/crillab-metrics/
https://jupyter.org/

Metrics, Release 1.2.6

2 Chapter 1. mETRICS - rEproducible sofTware peRformance analysIs in perfeCt Simplicity

CHAPTER

TWO

INSTALLATION

To execute Metrics on your computer, you first need to install Python on your computer (at least version 3.8).

As the metrics library is available on PyPI, you install it using pip.

pip install crillab-metrics

Note that, depending on your Python installation, you may need to use pip3 to install it, or to execute pip as a module,
as follows.

python3 -m pip install crillab-metrics

3

https://www.python.org/downloads/
https://pypi.org/project/crillab-metrics/

Metrics, Release 1.2.6

4 Chapter 2. Installation

CHAPTER

THREE

API

3.1 Core

.. automodule:: metrics.core.model
:members:

3.2 Builder

3.2.1 Attribute Manager

.. automodule:: metrics.core.builder.attribute_manager
:members:

3.2.2 Builder

.. automodule:: metrics.core.builder.builder
:members:

3.2.3 Typing Strategy

.. automodule:: metrics.core.builder.typing_strategy
:members:

5

Metrics, Release 1.2.6

6 Chapter 3. API

CHAPTER

FOUR

READING A CAMPAIGN INTO METRICS

To extract pieces of data from the campaign of experiments you ran and feed it into Metrics, you need to use the Scalpel
module of Metrics. Scalpel stands for “extraCt dAta of exPeriments from softwarE Logs” (sCAlPEL).

A campaign is basically read using the following:

from metrics.scalpel import read_campaign
my_campaign, my_configuration = read_campaign('path/to/campaign/file', log_level='WARNING
→˓')

Currently, two types of files can be given as input to Scalpel:

• a JSON file containing a serialized form of the campaign (when you have already loaded your campaign in
Metrics, and saved it for later use), or

• a YAML file describing how to extract data from the campaign you ran.

In the first case, there is almost nothing to do, as the JSON file generated by Metrics already contains all the data needed
by Scalpel (and the returned configuration will thus be None). In the second case, the following sections give more
details on how to write a configuration file that describes your campaign (the returned configuration will be an object
representation of this description).

Additionally, as you can see in the example above, a log_level parameter may be specified to the function
read_campaign(). This allows to configure the minimum level of the parsing events that should be logged. Available
levels are, from the lowest to the highest:

• 'TRACE'

• 'DEBUG'

• 'INFO'

• 'WARNING' (this is the default level)

• 'ERROR'

Parsing events are regularly logged by Scalpel to trace the extraction it performs, mostly for debugging purposes. For
instance, activating a lower logging level may allow to identify why some data is missing for a particular experiment.
However, it should be noted that Scalpel may become particularly verbose when doing so, which may affect perfor-
mance. This is why this feature should only be activated for debugging purposes.

7

Metrics, Release 1.2.6

4.1 Metadata of the Campaign

In the YAML file, you first need to give elementary information about the campaign, such as its name and the date on
which it has been run.

name: my-awesome-campaign
date: 2020-11-17

This information is used to identify your campaign, and is particularly interesting for the traceability of your experi-
ments.

The YAML file must also contain the experimental setup on which the campaign took place, as in the following example:

setup:
os: Linux CentOS 7 (x86_64)
cpu: Intel XEON X5550 (2.66 GHz, 8 MB cache)
gpu: Nvidia GeForce 256 SDR
ram: 32GB
timeout: 1800
memout: 1024

Note that, for the setup description, only timeout and memout are required. The other values may be displayed in the
reports generated by Metrics for reproducibility purposes.

4.2 Description of the Campaign Files

Scalpel is able to parse a wide variety of files that contain the output of the experiments you ran during your campaign.
All the information describing the source of your campaign must be given in the source section of your YAML
configuration file. The main key of this section is path, which lists the file(s) containing the data to extract.

source:
path:
- path/to/first/file
- path/to/second/file

This key declares the list of the files (either regular files or directories, depending on the format of your campaign) that
Scalpel will parse. Note that all files must have the same format.

All these files will be parsed sequentially, and their content will be merged into a single campaign. If these files
represent distinct parts of your campaign (e.g., each file contains the result of a different experiment-ware), you may
be interested in the extraction of metadata from the name of the file, described here.

If you only have one file containing all the results of your campaign, you may avoid the use of a list, and simply write
the path of the file as the value for path:

source:
path: path/to/single/file

In the following subsections, we present what you must add to the source field to configure Scalpel for parsing your
campaign, depending on its format.

8 Chapter 4. Reading a Campaign into Metrics

Metrics, Release 1.2.6

4.2.1 Parsing a CSV File

The CSV (Comma-Separated Values) format is often used to store experimental data. It is mainly a tabular format,
which has an (optional) header line giving the titles of the column. Each of the remaining lines corresponds to the data
collected during an experiment.

Depending on the variant, columns may be separated by:

• a comma (,), giving the default csv format,

• a semicolon (;), giving the csv2 format, or

• a tabulation (\t), giving the table format.

To specify that your campaign is in one of these formats, you need to add the following to your YAML configuration
file:

source:
path: path/to/my/file.csv
format: csv

Actually, the format may be omitted in this example, as the extension of the file already tells Scalpel that the file is in
the (classical) csv format. Similarly, if you specify as path the files path/to/my/file.csv2 or path/to/my/file.
table, you may omit the format, as Scalpel will infer that such files use the csv2 and table formats, respectively.

You may also have more “exotic” CSV-like files, which do not use a standard separator or quote character (by default,
" is used as quote character). If this is the case, you may describe them by adding the following keys in the source
section:

source:
quote-char: "%"
separator: "|"

In the example above, the quote character is % and the columns are separated by the character |.

Finally, you may have a header for your CSV file, or not. By default, the first line is considered as a header line, and
is used to identify the values parsed in the other lines as experimental data. If you do not have a header line, add the
following key:

source:
has-header: false

In this case, values will be identified by the index of the corresponding column, as a string (starting from "0"). Note
that, in this case, Scalpel’s naming convention cannot be followed. As such, do not forget to specify the mapping of
the columns in the text file to fit Scalpel’s needs (see below for more details). You must also do so as long as the name
of the columns in your CSV files do not fit Scalpel’s expectations.

4.2.2 Parsing an “Evaluation” File

If you are interested in analyzing the results of a campaign run with the so-called “Evaluation” platform (such as, for
instance, the results of the XCSP’19 competition, we provide a parser to read the “results of individual jobs as text file”
provided by this platform (as the one of the XCSP’19 competition, available here).

To do so, specify the following in your YAML configuration file:

source:
path: path/to/result/file.txt
format: evaluation

4.2. Description of the Campaign Files 9

http://www.cril.univ-artois.fr/XCSP19/
http://www.cril.univ-artois.fr/XCSP19/results/export.php?idev=99

Metrics, Release 1.2.6

As this platform does not use in general the same naming convention as that of Scalpel, do not forget to specify the
mapping of the columns in the text file to fit Scalpel’s needs (see below for more details).

4.2.3 Parsing a “Reverse” CSV File

We call a CSV file “reverse” when each line in this file corresponds to an input, and the columns to the different statistics
collected for the experiment-wares run during the campaign. Here is an example of such a file:

xp-ware-a,xp-ware-b,xp-ware-c
0.01,0.02,0.03

In this example, we consider a campaign that run three experiment-wares, namely xp-ware-a, xp-ware-b and
xp-ware-c. Each column is by default interpreted as the CPU time of the corresponding experiment, as this is the
only statistic required for an experiment. Also, note that no input is specified in this example. This is tolerated, as each
line in such a format maps to exactly one input. However, we strongly recommend specifying the name of the input
file, especially because it makes easier the interpretation of the experimental results and their reproducibility.

A more complete example of a “reverse” CSV file is given below:

input,xp-ware-a.cpu_time,xp-ware-a.memory,xp-ware-b.cpu_time,xp-ware-b.memory,xp-ware-c.
→˓cpu_time,xp-ware-c.memory
input-a,0.01,10,0.02,20,0.03,30

Here, we collect more statistics, as we consider both the cpu_time and memory needed for an experiment. Those
names are used to identify the corresponding statistics in the representation of the experiment. In the example above,
the experiment-ware and the statistics identifiers are separated with a dot (.), which is the default. If you want to specify
a different separator, you can specify it in the YAML configuration as follows (make sure not to use the same separator
as for the columns):

source:
title-separator: "!"

To configure how a reverse CSV file is parsed, you can also use the same properties as those used in classical CSV file
(see the previous section), and specify one of the formats reverse-csv, reverse-csv2 or reverse-table (using
the same naming convention as before).

4.2.4 Parsing Raw Data from a File Hierarchy

If you have gathered the output of your experiment-wares in a directory, Scalpel can explore the file hierarchy rooted
at this directory and extract all relevant data for you. We support three different kinds of file hierarchies, which are
described below.

Note that, by default, Scalpel does not follow symlinks when exploring a file hierarchy. For each of the configurations
below, you may alter this behavior by adding the following to the source section of the YAML file:

source:
follow-symlinks: true

10 Chapter 4. Reading a Campaign into Metrics

Metrics, Release 1.2.6

One File per Experiment

In this case, the file hierarchy being explored is supposed to contain exactly one (regular) file per experiment. You can
configure Scalpel to consider such a file hierarchy using the following description:

source:
path: /path/to/my-experiment-directory
format: one-file

Let us consider an example to illustrate how Scalpel extracts data based on this configuration. Suppose that the file
hierarchy to explore has the following form:

my-experiment-directory
+ experiment-a.log
+ experiment-b.log
` more-experiments

+ experiment-c.log
` experiment-d.log

Here, Scalpel will recursively explore the whole file hierarchy, and will parse all regular files, provided that these
files are specified in the data section of the YAML configuration file (see the dedicated documentation here for more
details). Each file experiment-a.log, experiment-b.log, experiment-c.log and experiment-d.log will be
considered as the output of a single experiment.

Note that these files may have common formats (such as JSON, XML or CSV) or may also be the raw output of the
solver. More details on how to retrieve relevant information from these files are given here.

Multiple Files per Experiment

In this case, the file hierarchy being explored is supposed to contain a set of (regular) files per experiment. The name
of the files (without their extensions) will be used to identify each experiment. You can configure Scalpel to consider
such a file hierarchy using the following description:

source:
path: /path/to/my-experiment-directory
format: multi-files

Let us consider an example to illustrate how Scalpel extracts data based on this configuration. Suppose that the file
hierarchy to explore has the following form:

my-experiment-directory
+ experiment-a.out
+ experiment-a.err
+ experiment-b.out
+ experiment-b.err
` more-experiments

+ experiment-c.out
+ experiment-c.err
+ experiment-d.out
` experiment-d.err

Here, Scalpel will recursively explore the whole file hierarchy, and will parse all regular files, provided that these
files are specified in the data section of the YAML configuration file (see the dedicated documentation here for more
details). In this case, the files experiment-a.out and experiment-a.err, for instance, will be considered as outputs
of the same experiment (they are both named experiment-a).

4.2. Description of the Campaign Files 11

Metrics, Release 1.2.6

Note that these files may have common formats (such as JSON, XML or CSV) or may also be the raw output of the
solver. More details on how to retrieve relevant information from these files are given here.

One Directory per Experiment

In this case, the file hierarchy being explored is supposed to have one directory that contain the output files of each
experiment. The name of the files inside this directory may be arbitrary (and even the same from one experiment to
another). You can configure Scalpel to consider such a file hierarchy using the following description:

source:
path: /path/to/my-experiment-directory
format: dir

Let us consider an example to illustrate how Scalpel extracts data based on this configuration. Suppose that the file
hierarchy to explore has the following form:

my-experiment-directory
+ experiment-a
| + stdout
| + stderr
+ experiment-b
| + stdout
| + stderr
` more-experiments

+ experiment-c
| + stdout
| + stderr
` experiment-d

+ stdout
+ stderr

Here, Scalpel will recursively explore the whole file hierarchy, and will consider each directory containing regular files
as an experiment. All the regular files contained in this directory will thus be considered as outputs of the corresponding
experiments, as long as these files are specified in the data section of the YAML configuration file (see the dedicated
documentation here for more details). For instance, the stdout and stderr files in the directory experiment-a
will be considered as output files of the experiment experiment-a, and will thus be used together to extract relevant
information for this experiment.

Note that these files may have common formats (such as JSON, XML or CSV) or may also be the raw output of the
solver. More details on how to retrieve relevant information from these files are given here.

4.2.5 Parsing Unsupported Formats

When developing Scalpel, we tried to think about as many campaign formats as possible. However, it may happen that
you need to parse a campaign that uses a format that is not recognized (yet) by Scalpel. If this is the case you may write
your own parser. by extending the class CampaignParser. This class must define a constructor taking as argument a
CampaignParserListener and a ScalpelConfiguration. To give you ideas on how to write such a parser, you
may have a look to the source of our parsers.

Then, add the class of your parser to your YAML configuration file as follows:

source:
parser: my.completely.specified.AwesomeParser

12 Chapter 4. Reading a Campaign into Metrics

https://github.com/crillab/metrics/tree/master/metrics/scalpel/parser

Metrics, Release 1.2.6

Scalpel will dynamically instantiate your parser, and will then use it to parse the campaign. To make this possible,
you will need to import your AwesomeParser before invoking read_campaign(), to make sure that this class will be
reachable.

Remark

If you need to parse a campaign that uses an unsupported format, do not hesitate to submit an issue, with
an example of what you want to parse. We will provide you some advices for writing your own parser.

We may also add a new feature to Scalpel by supporting this format, either by writing a parser or by
integrating yours if you agree to contribute and submit a pull request.

4.2.6 Identifying Successful Experiments

When analyzing experimental results, it is often useful to identify which experiments are successful and which are not.
By default, an experiment is considered as successful when it ended within the time limit. However, you may also want
to perform additional checks to make sure that an experiment succeeded (for instance, by checking that the output of
the experiment is correct).

To do so, you may add to your YAML configuration file an is-success filter that allows to make such checks, as in
the following example:

source:
is-success:
- ${success}
- ${valueA} == ${valueB} or {valueC} == 0
- ${result} in ['CORRECT', 'CORRECT TOO']

Let us describe the syntax of the filter in the example above. First, is-success defines a list of conjunctively interpreted
Boolean expressions. These expressions are themselves disjunctions of predicates.

Each predicate has to contain at least one variable, delimited using ${...}. Such a variable corresponds to the identifier
of an experimental data read for a given experiment (for instance, the cpu_time of the experiment).

If the predicate contains only the variable (such as ${success}), then this variable is interpreted as a Boolean value.
Otherwise, the predicate can use any comparison operator (among <, <=, ==, !=, >=, >) to compare the variable with
either a literal value (which can be a Boolean value, an integer, a float number or a string) or another variable. A
predicate can also check that a variable is either contained in a list of values (either literal values or variables) or
contains a value (either a literal value or a variable) using the in operator. Lists are delimited using [...].

Remark

It is worth noting that Scalpel itself does not use is-success to filter data, in the sense that even failed
experiments are included in the campaign it builds.

Instead, Scalpel passes this filter on to Wallet, so that the drawn figures only take into account successful
experiments.

4.2. Description of the Campaign Files 13

Metrics, Release 1.2.6

4.3 Description of the Data to Extract

In order to extract data from the files of your campaign, you need to provide a description of their content. In the
following, we describe how to write such a description.

4.3.1 Extracting Data from Raw Files

If your experiment-ware produces raw output, and you want Scalpel to parse it, you can describe how to extract data
from the corresponding files (which can be given using wildcards or relative paths) by providing regular expressions,
as in the following example:

data:
raw-data:
- log-data: cpu_time
file: "*.out"
regex: 'overall runtime: (\d+.\d+) seconds'
group: 1

In this case, when Scalpel reads a file with extension .out, it looks for a line that matches the specified regular expres-
sion, and extracts the cpu_time of the experiment from the group 1 (i.e. (\d+.\d+)) in this regular expression. In
this case, the group could be omitted, as the value 1 is the default.

To make easier the description of raw data, Scalpel also recognizes so-called simplified patterns, as illustrated in the
following example:

data:
raw-data:
- log-data: cpu_time
file: "*.out"
pattern: "overall runtime: {real} seconds"

Observe that, here, pattern is used in place of regex, and that the group (\d+.\d+) used in the previous example
is replaced by {real}. This syntax allows to use one of the different symbols used to represent common data, and to
avoid worrying about whitespaces (in a simplified pattern, any whitespace is interpreted as a sequence of whitespace
characters).

Scalpel can interpret the following symbols.

• {integer} for a (possibly signed) integer,

• {real} for a real number,

• {boolean} for a Boolean value (true or false, case-insensitive),

• {word} for a word (i.e., a sequence of letters, digits and _), and

• {any} for any sequence of characters (not greedy).

If the same line contains multiple relevant data, you can extract them by giving names to the groups you specified (in
this case, the value for log-data may be omitted).

data:
raw-data:
- file: "*.out"
pattern: "runtime: {real} seconds (cpu), {real} seconds (wallclock)"
groups:

(continues on next page)

14 Chapter 4. Reading a Campaign into Metrics

Metrics, Release 1.2.6

(continued from previous page)

cpu_time: 1
wall_time: 2

Note that it is not possible to mix regular expressions and simplified patterns.

4.3.2 Extracting Data from File Names

Depending on your setting, you may need to extract relevant information from the name of the file to parse (for instance,
the name of the experiment-ware or that of the input). This can be achieved through file-name-meta, as in the
following example:

data:
file-name-meta:
pattern: "{any}_{any}.log"
groups:
experiment_ware: 1
input: 2

As for log-data, you may choose to use either regular expressions (regex) or a simplified pattern. The fields in
groups are used to name the groups identifying relevant data.

For instance, if the file my-xp-ware_my-input.log, the group 1 matches with my-xp-ware, which is thus identified
as the experiment_ware, while the group 2 matches with my-input, which is thus identified as the input.

As file hierarchies are explored through the file system, the paths of the files that are encountered during this exploration
are system-dependent (in particular, the file separator may vary from one system to another). Scalpel is able to dynam-
ically adapt file separators used in the pattern specified as file-name-meta to ensure cross-platform compatibility for
your configuration. To make sure that this compatibility is applied, you must always use / as file separator (even if it
is not that of your system).

4.3.3 Extracting Data from Common Formats

If your output files use a common format (as JSON, CSV or XML), you do not need to use raw-data to extract their
value. Instead, you just need to specify the name of such files as follows (wildcards and relative paths are supported).

data:
data-files:
- "*.json"
- "output.xml"

Note that Scalpel will be able to extract data from such files by inferring automatically identifiers for the data it extracts.
In the case of CSV files, the identifiers that will be used is inferred based on the header of the file.

For JSON and XML files, a “dotted” notation will be used. For example, consider the following JSON output:

{
"experiment": {
"runtime": 123.4,
"value": [24, 27, 42, 51, 1664]

}
}

4.3. Description of the Data to Extract 15

Metrics, Release 1.2.6

Scalpel will automatically identify the runtime as experiment.runtime and the list of values as experiment.value.
The same identifiers are inferred for the following XML output:

<experiment runtime="123.4">
<value>24</value>
<value>27</value>
<value>42</value>
<value>51</value>
<value>1664</value>

</experiment>

By default, all keys stored in a JSON or XML file are extracted by Scalpel, and stored in the internal representation of
the campaign. This may be memory consuming, in particular if there are some keys that you do not need. To discard
such keys, you may specify them in the field ignored-data in your YAML configuration (this may actually be applied
to any key defined by the campaign). For instance, the snippet below allows to discard the list experiment.value
described in the two examples above.

data:
ignored-data:
- experiment.value

If needed, you can also configure the parser to use for reading data from data-files, as in the following example:

data:
data-files:
- name: "*.json"
format: json
name-as-prefix: true

- name: "*.csv"
format: csv
has-header: false
separator: " "
name-as-prefix: true

- name: "*.txt"
parser: my.completely.specified.AwesomeParser

Observe in the example above that CSV files may be configured as for CSV campaigns (the same fields are used to
describe the format of the file).

For each data-file, you can also set name-as-prefix to true, so that each field in the file will be prefixed by the name
of the file, using a dotted notation. This is particularly useful whe the same key appears in different files.

Moreover, it is also possible to specify a custom parser, provided you give the completely specified name
of this class. This parser must extend CampaignOutputParser, and its constructor must take as input a
CampaignParserListener, a ScalpelConfiguration, the path of the file to parse and its name.

Finally, you may face some cases where the wildcards you use for declaring data files (or even log-data) are too generic.
To ignore some files that still match these wildcards, you may specify the files to ignore with the field ignored-files
(wildcards and relative paths are supported). For example, the snippet below allows to ignore some JSON files.

data:
ignored-files:
- "*ignore*.json"

16 Chapter 4. Reading a Campaign into Metrics

Metrics, Release 1.2.6

4.3.4 Mapping Data to Scalpel’s Expectations

When parsing an experiment, Scalpel expects to find the required information to describe the result of this experiment.
The identifier of such data is thus crucial to allow Scalpel to build consistent experiments. This is in particular true for
the identifiers:

• experiment_ware, which is the experiment-ware run in a given experiment,

• input, which is the input on which the experiment-ware has been run, and

• cpu_time, which is the runtime of the experiment.

If these identifiers are not specified in your campaign files (for instance, you have a CSV file in which the header does
not use these names), you need to tell Scalpel how to map your experimental data to the expected identifiers. This can
be achieved by specifying a mapping as in the following example:

data:
mapping:
experiment_ware:
- program
- options

cpu_time: runtime
input: file
file: path

In this example, we have that, for each experiment, the data read as runtime will be interpreted as cpu_time and file
as input.

Note that, for experiment_ware, two identifiers are specified. In this case, the data read as program and options
will be concatenated (in this order) to build up the identifier of the experiment-ware. Moreover, if this experiment-ware
does not exist yet, an object representation of this experiment-ware will be instantiated, using program and options
has two additional fields.

Finally, observe that path is mapped to file, which is itself mapped to input. In this case, a recursive mapping
is actually applied on path, which will be eventually interpreted as input while parsing the campaign. Recursive
mapping is the recommended approach for mapping several identifiers to the same key.

Remark

This mapping is mainly designed to map custom identifiers to Metrics’ naming conventions. However, you
can also use this mapping to rename other data (especially when their identifiers are automatically inferred
by Scalpel), or to group together data that are separated in your campaign files.

4.3.5 Adding Default Values

Sometimes, it may happen that some data are missing in your experiment files, either because some experiment-wares
did not output them correctly, or did not have enough time to output them within the time limit. This may be a problem
if this data is required by Scalpel. For such data, you may provide default values as follows:

data:
default-values:
cpu_time: 1800

In this example, we have set the default cpu_time to the same value as the time limit (note that this is done by default
by Scalpel). You may set default values for any key of the campaign, and even for “partial keys” (i.e., those that are
part of a mapping).

4.3. Description of the Data to Extract 17

Metrics, Release 1.2.6

4.4 Additional Information About the Campaign

When collecting data about a campaign, you may want to add relevant information that do not appear in the files
produced during the execution of your experiments regarding its settings. This section presents how you can describe
the experiment-wares and inputs you used for your experiments.

4.4.1 Description of the Experiment-Wares

Optionally, you may provide a description of the experiment-wares (i.e., the software programs you ran during your
campaign). By default, experiment-wares are automagically instantiated when encountered during the parsing of your
campaign files.

However, you may want to specify additional data w.r.t. the programs you experimented (for instance, the version of
the software, the command line options passed to the program that was executed, etc.).

As such data may not appear in your campaign files, you can specify them in the YAML configuration as follows:

experiment-wares:
- name: my-awesome-xpware
version: 0.1.0
command-line: ./my-awesome-xpware -o option

- name: my-great-xpware
commit-sha: abcd1234
command-line: ./my-great-xpware -v value

When you specify information about experiment-wares, only their names are required. The name of an experiment-ware
must uniquely identify this experiment-ware in the campaign, and must match the one that Scalpel will extract from
your campaign files. For all other information you specify, you may use any key you want to identify this information.

Also, note that you are not required to use the same keys for all experiment-wares. You may also omit experiment-wares
for which you do not need more information than those mentioned in the campaign files: these experiment-wares will
simply be discovered when parsing the files.

Moreover, you may simply specify the list of the experiment-wares used in the campaign:

experiment-wares:
- my-awesome-xpware
- my-great-xpware

Doing so is rarely useful, as the name of the experiment-wares must necessarily be mentioned in the campaign files,
and thus will be discovered during their parsing. However, this may be helpful to remind you that some experiments
are missing, for instance, if you do not have run all experiment-wares yet.

4.4.2 Description of the Inputs

As for experiment-wares, you may want to add data about the inputs of your experiments. This is achieved by defining
an input-set in your YAML configuration file, and giving it a proper name, as in the following example:

input-set:
name: my-awesome-input-set
type: list
files:
- path: path/to/instanceA.cnf

(continues on next page)

18 Chapter 4. Reading a Campaign into Metrics

Metrics, Release 1.2.6

(continued from previous page)

family: F1
- path: path/to/instanceB.cnf
family: F2

In this example, files allows to list all the inputs you used in your experiments. As for experiment-wares, you may
specify as many data as you want for your inputs. You may also use different keys for these data, and omit input files
when you do not need to add more information than that provided in the campaign files. The only required key is path.

In the example above, observe that the type list is declared, to specify that all relevant information are specified in
files.

Another possible type is file-list, if you only list the path of the files (in which case, you do not need to specify the
path key). You may also use file if this list is written in a separate file (one path per line), in which case the files
must give the list of the files to read.

Finally, you may also specify a hierarchy type, in which case Scalpel will explore a file hierarchy to find all input
files from the file hierarchy rooted at the directory specified in files, as in the following example:

input-set:
name: my-awesome-input-set
type: hierarchy
extensions: ".cnf"
files: /path/to/my/benchmarks
file-name-meta:
pattern: /path/to/my/benchmarks/{any}/{any}.cnf
groups:
family: 1
name: 2

Note that, in this example, the input files that are considered are those stored in the file hierarchy rooted at the directory
/path/to/my/benchmarks, and having a .cnf extension (you may also specify a list of extensions if you have more
than one).

Also, observe that a file-name-meta section is specified, with the same syntax as that described here. It allows
extracting relevant information from the name of each input.

Both extensions and file-name-meta are taken into account for any type of input-sets.

4.4. Additional Information About the Campaign 19

Metrics, Release 1.2.6

20 Chapter 4. Reading a Campaign into Metrics

CHAPTER

FIVE

ANALYZE A CAMPAIGN IN METRICS

Once the YAML file is correctly configured (Reading a Campaign into Metrics), the analysis of data can started. To
analyze the campaign of experiments thanks to Metrics, you need to use the Wallet module of Metrics. Wallet stands
for “Automated tooL for expLoiting Experimental resulTs” (wALLET).

To manipulate data, Wallet uses a pandas Dataframe. A dataframe is a table composed of rows corresponding to exper-
imentations (also denoted as observations) and columns corresponding to the variables/metrics of an experimentation.

It is not necessary to have wide knowledge about this library to manipulate Wallet data but in order to have a better
idea on how data are manipulated, an example of a classical analysis dataframe is given:

input experiment_ware cpu_time

0 XCSP17/AllInterval/AllInterval-m1-s1/AllInterval-035.xml BTD 19.07.01 0.031203
1 XCSP17/AllInterval/AllInterval-m1-s1/AllInterval-035.xml choco-solver 2019-09-16 1.51053
2 XCSP17/AllInterval/AllInterval-m1-s1/AllInterval-035.xml choco-solver 2019-09-20 1.52427
3 XCSP17/AllInterval/AllInterval-m1-s1/AllInterval-035.xml choco-solver 2019-06-14 1.60424
4 XCSP17/AllInterval/AllInterval-m1-s1/AllInterval-035.xml AbsCon 2019-07-23 3.65329

For the next, the documentation focuses on the analysis of a CSP solver competition (XCSP’19).

21

https://pandas.pydata.org/
http://www.cril.univ-artois.fr/XCSP19/

Metrics, Release 1.2.6

5.1 A Preview of What is Able to Do an Analysis

Globally, an *Analysis object is composed of five parts:

• getters to get basical objects from the analysis

• checkers that permit to check many important information about the analysis

• manipulations that permit to manipulate the state of the analysis

• figures that permit to draw some tables and plots representing the data

• others that correspond to operations like exporting.

22 Chapter 5. Analyze a Campaign in Metrics

Metrics, Release 1.2.6

Here, an analysis is divided in three different objects:

• BasicAnalysis is an analysis with the only constraint of a complete cartesian product between inputs and
experiment-wares

• DecisionAnalysis is an analysis taking into account the time and the success, or not, of each experiment

• OptiAnalysis is an analysis of an optimality problem taking into account the list of bound and timestamps, and
the success, or not, of each experiment

A BasicAnalysis could be used openly without the constraint of success, time, or bound list information.

In this tutorial, we firstly focus on a DecisionAnalysis with the inherited methods from a BasicAnalysis.

A final part focuses on the optimality analysis of the object OptiAnalysis.

5.2 Create/Import/Export a DecisionAnalysis

5.2.1 The DecisionAnalysis Object

To create a new analysis, you only need to import the DecisionAnalysis class from Wallet module and instantiate a
new DecisionAnalysis object with the path to the YAML configuration file:

from metrics.wallet import DecisionAnalysis

analysis = DecisionAnalysis(input_file='path/to/xcsp19/YAML/file')

In the constructor above, it is possible to specify a log_level that will be passed to Scalpel to log parsing events.

The analysis is composed of many variables describing the experiments:

• necessary ones: input, experiment_ware, cpu_time, timeout

• optional ones (given by the current competition file): Category, Checked answer, Objective function,
Wallclock time, Memory, Solver name, Solver version.

These variables permit to check the consistency and the validity of information. Some methods, called checkers, permit
to operate some basic operations:

• <analysis>.check_success(<lambda>): given a lambda, this method permits to check if an experiment is
a success or not (this method is automatically executed when the user has informed it in the Scalpel file);

• <analysis>.check_missing_experiments(): this method is automatically called by the *Analysis con-
structor to replace missing experiments by unsuccessful experiments;

• <analysis>.check_xp_consistency(<lambda>): given a lambda, this method permits to check the consis-
tency for each experiment;

• <analysis>.check_input_consistency(<lambda>): given a lambda, this method permits to check the
consistency for each input (composed of many experiments); it asks some basic knowledge on DataFrame ma-
nipulation (an example is given by the next).

check_success and check_missing_experiments are automatically called during the *Analysis constructor call.
After, the user could (re-)check these success and consistency methods as follow:

inconsistent_returns = {
'ERR WRONGCERT', 'ERR UNSAT'

}

(continues on next page)

5.2. Create/Import/Export a DecisionAnalysis 23

Metrics, Release 1.2.6

(continued from previous page)

successful_returns = {'SAT', 'UNSAT'}

is_consistent_by_xp = (lambda x: not x['Checked answer'] in inconsistent_returns)
is_consistent_by_input = (lambda df: len(set(df['Checked answer'].unique()) & successful_
→˓returns) < 2)
is_success = (lambda x: x['Checked answer'] in successful_returns)

analysis.check_success(is_success)
analysis.check_input_consistency(is_consistent_by_input)
analysis.check_xp_consistency(is_consistent_by_xp)

The *Analysis construction warns the user when inconsistencies are found, missing data, . . . :

1 experiment is missing and has been added as unsuccessful.
4 experiments are inconsistent and are declared as unsuccessful.
1 input is inconsistent and linked experiments are now declared as unsuccessful.

The analysis creates also its own variables corresponding to the previous checkings: error, success, missing
consistent_xp and consistent_input.

It exists another way to build an analysis that is presented in the Advanced Usage section.

5.2.2 Export and Import an Analysis

At any moment, the analysis could be exported to save its state into a file:

analysis.export('analysis.csv')

An analysis could be exported as a csv (as a DataFrame representation) if the .csv extension is used, else the analysis
is exported as a binary object.

To import an analysis from a file, the function import_analysis_from_file may be used:

imported_analysis = DecisionAnalysis.import_from_file(filepath)

You can observe an example of these functions in this notebook.

5.3 Manipulate the Data from *Analysis

Before producing the first figures, Wallet proposes to manipulate the different experiments composing the dataframe.
It allows to analyze more finely the campaign.

24 Chapter 5. Analyze a Campaign in Metrics

https://github.com/crillab/metrics/blob/master/example/example/xcsp-19/create_analysis.ipynb

Metrics, Release 1.2.6

5.3.1 Generate a New Information/Variable for Each Experiment

Wallet can add new information to the underlying dataframe by giving a function/lambda to a mapping method of
BasicAnalysis. For the next example, the input name corresponds to the path of the input (e.g., /XCSPxx/family/
.../input-parameters.xcsp). It could be interesting to extract the family name to use it in the rest of the analysis.
For this, the method add_variable() from BasicAnalysis:

import re
family_re = re.compile(r'^XCSP\d\d/(.*?)/')

new_analysis = analysis.add_variable(
new_var='family',
function=lambda x: family_re.match(x['input']).group(1)

)

add_variable() takes as first parameter the name of the future created column, and as second parameter the lambda
that applies the regular expression family_re to the variable input of the row x (the regular expression returns an
object corresponding to the matching strings: .group(1) permits to retrieve the family name of the input).

The result (as a sample of 5 experiments with the only 2 interesting columns shown) is:

input family

3641 XCSP17/Primes/Primes-m1-p25/Primes-25-80-2-7.xml Primes
2992 XCSP17/MaxCSP/MaxCSP-maxclique-s1/MaxCSP-brock-800-2.xml MaxCSP
2956 XCSP17/MagicSquare/MagicSquare-sum-s1/MagicSquare-13-sum.xml MagicSquare
7106 XCSP18/GracefulGraph/GracefulGraph-K05-P02_c18.xml GracefulGraph
4423 XCSP17/QRandom/QRandom-mdd-7-25-5/mdd-7-25-5-56-09.xml QRandom

Thanks to this method, the user is also able to update existing columns (e.g., renaming the experiment-wares to simplify
their names).

You can observe an example of this command in this notebook.

5.3.2 Remove Variables from the Analysis

Sometimes, some analysis information are not useful: it could be interesting to simplify and lighten the dataframe (e.g.,
when we need to export the analysis in a lighter format). To do this:

analysis.remove_variables(
vars=['Category', 'Objective function']

)

where vars parameter take the list of variables to remove.

5.3. Manipulate the Data from *Analysis 25

https://github.com/crillab/metrics/blob/master/example/xcsp-19/create_analysis.ipynb

Metrics, Release 1.2.6

5.3.3 Add an Analysis or a DataFrame to the current Analysis

When many campaigns needs to be compared and two analysis a1 and a2 have been created, it is possible de merge
them:

a3 = a1.add_analysis(a2)

The user has to be careful to merge consistent data: the new analysis needs to contain the Cartesian product of the
available inputs in its dataframe with the experiment-wares. To ensure this and the consistency of its analysis, the user
can also apply the lambda as described for the Analysis construction.

In the same way, it is possible to append the analysis with a consistent dataframe:

a3 = a1.add_data_frame(a2.data_frame)

5.3.4 Add a Virtual Experiment-Ware

Sometimes, it may be interesting to introduce what we call a Virtual Experiment-Ware (VEW), which generalizes the
well-known Virtual Best Solver (VBS). It allows to compare our current experiment-wares to the virtual (best) one. A
VBEW (Virtual Best Experiment-Ware) selects the best experiment for each input from a selection of real experiment-
ware thanks to the function find_best_cpu_time_input:

from metrics.wallet import find_best_cpu_time_input

analysis_plus_vbs = analysis.add_virtual_experiment_ware(
function=find_best_cpu_time_input,
xp_ware_set=None, # None corresponds to the all available experiment-wares of the␣

→˓analysis
name='my_best_solver'

)

Here, we create a VBEW named my_best_solver and based on the best performances of the overall set of experiment-
wares. my_best_solver will receive the result of one of these experiment-wares minimizing the cpu_time column.

find_best_cpu_time_input is a function using some basic knownledge about dataframe. As an example,
find_best_cpu_time_input representation is shown:

def find_best_cpu_time_input(df):
s = df['cpu_time']
return df[s == s.min()]

find_best_cpu_time_input receives a dataframe composed of the experiments composing a given input. It finds
the minimal cpu_time value and returns the row corresponding to this best time.

You can observe an example of this method in this notebook.

26 Chapter 5. Analyze a Campaign in Metrics

https://github.com/crillab/metrics/blob/master/example/example/xcsp-19/create_analysis.ipynb

Metrics, Release 1.2.6

5.3.5 Subset of *Analysis Rows

*Analysis is also able to make a subset of its experiments.

By Filtering Inputs

By default, it exists some useful subset methods in *Analysis object to filter inputs (and linked experiments):

• keep_common_failed_inputs(): returns a new *Analysis with only the common failed experiments. It
corresponds to inputs for which no experiment-ware has succeeded;

• keep_common_solved_inputs(): returns a new *Analysis with only the common successful experiments.
It corresponds to inputs for which no experiment-ware has failed;

• delete_common_failed_inputs(): returns a new *Analysis where commonly failed inputs are removed;

• delete_common_solved_inputs(): returns a new *Analysis where commonly succeeded inputs are re-
moved.

Finally, we present a last and generic method to make a subset of inputs:

analysis.filter_inputs(
function=<lambda>,
how=<"all"|"any">

)

The filter_inputs method takes two parameters:

• function corresponds to a True/False lambda that says if an experiment (from input experiments) is acceptable
or not

• how corresponds to the need to have at least one or all the experiments from input acceptables.

As examples, we show how the four default methods are set with this generic one:

Default method Implementation
delete_common_failed_inputsanalysis.filter_inputs(function=lambda x: x['success'],

how='any')
delete_common_solved_inputsanalysis.filter_inputs(function=lambda x: not x['success'],

how='any')
keep_common_failed_inputs analysis.filter_inputs(function=lambda x: not x['success'],

how='all')
keep_common_solved_inputs analysis.filter_inputs(function=lambda x: x['success'],

how='all')

You can observe an example of this subset in this notebook.

5.3. Manipulate the Data from *Analysis 27

https://github.com/crillab/metrics/blob/master/example/example/xcsp-19/create_analysis.ipynb

Metrics, Release 1.2.6

By Filtering Experiments

Analysis permits also to precise what are the experiments that the user wants to filter:

analysis_no_para = analysis.filter_analysis(
function=lambda x: 'parallel' not in x['experiment_ware']

)

The previous example permits to remove all the solvers containing the term parallel in its title.

Derived from this previous generic method, some default actions are also existing:

Default method Implementation
remove_experiment_wares(<set>)analysis.filter_analysis(lambda x: x[EXPERIMENT_XP_WARE] not

in experiment_wares)
keep_experiment_wares(<set>)analysis.filter_analysis(lambda x: x[EXPERIMENT_XP_WARE] in

experiment_wares)

5.3.6 Grouping the Analysis

To group the analysis into specific analysis, two more methods are presented: the classical groupbymethod and another
one to group experiment-wares by pairs.

groupby Operator

The groupby operator allows to create a list of new *Analysis instances grouped by a column value. For example, if
we have the family name family of inputs in the dataframe, it could be interesting to make separated analysis of each
of them:

for sub_analysis in analysis.groupby('family'):
print(sub_analysis.description_table())

These previous lines will describe the analysis of each family of my_analysis.

Pairs of Experiment-wares

To compare more precisely the overall pairs of experiment-wares, a method is implemented to return the corresponding
analysis:

for sub_analysis in analysis.all_experiment_ware_pair_analysis():
print(sub_analysis.description_table())

28 Chapter 5. Analyze a Campaign in Metrics

Metrics, Release 1.2.6

5.4 Draw Figures

After having built the analysis and manipulated the data we want to highlight, we can start drawing figures. Thanks to
Wallet, we are able to build two kinds of plots: static and dynamic.

Wallet permits to draw static plots and computing tables showing different statistic measures. These figures can easily
be exported in a format specified by the user, such as LaTeX for tables and PNG or vectorial graphics (such as SVG or
EPS) for plots. Static plots are highly configurable in order to fit in their final destination (e.g., in slides or articles).

5.4.1 Static Tables

Each table that will be described hereafter are exportable into the LaTeX format. In addition to this transformation, it
is possible to personnalize the the number pattern:

• dollars_for_number puts numbers in math mode (for LaTeX outputs);

• commas_for_number splits numbers with commas in math mode (for LaTeX outputs).

Each table generated are observable in this notebook.

Describe the Current Analysis

Before manipulating the analysis, it could be interesting to describe it:

analysis.description_table()

which yields the following:

analysis

n_experiment_wares 13
n_inputs 300
n_experiments 3900
n_missing_xp 0
n_inconsistent_xp 2
n_inconsistent_xp_due_to_input 0
more_info_about_variables .data_frame.describe(include=’all’)

This first method allows to fastly understand how is composed the campaign. Here, simple statistics are shown, as the
number of experiment-wares, inputs, experiments or missing ones, but one can also show exhaustively the different
variable descriptions by applying <analysis>.data_frame.describe(include='all').

Describe the Errors

If it exists missing data, the Wallet analysis can print a table showing what are these missing experiments by calling:

analysis.error_table()

which yields the following:

5.4. Draw Figures 29

https://github.com/crillab/metrics/blob/master/example/example/xcsp-19/tables_from_analysis.ipynb

Metrics, Release 1.2.6

in-
put

ex-
per-
i-
ment_ware

cpu_timeChecked
an-
swer

Wall-
clock
time

Mem-
ory

Solver
name

Solver
ver-
sion

time-
out

suc-
cess

user_successmiss-
ing

con-
sis-
tent_xp

con-
sis-
tent_input

er-
ror

fam-
ily

3576 XCSP19/hcp/graph255.xmlcosoco
2

0.045418ERR
UN-
SAT

0.04514210 cosoco2 2400 False False False False True True hcp

3596 XCSP19/hcp/graph48.xmlchoco-
solver
2019-
09-
16

2306.85ERR
WRONGCERT

583.6971.55305e+07choco-
solver

2019-
09-
16

2400 False False False False True True hcp

The Statistic Table

The table allows to show a global overview of the results through the following statistics:

• count is the number of solved inputs for a given experiment-ware;

• sum is the time taken by the experiment-ware to solve (or not) inputs (including timeout inputs);

• PARx is equivalent to sum but adds a penalty of x times the timeout to failed experiments (PAR stands for Penalised
Average Runtime);

• common count is the number of inputs commonly solved by all the experiment-wares;

• common sum is the time taken to solve the commonly solved inputs;

• uncommon count corresponds to the number of inputs solved by an experiment-ware less the common ones (the
common ones could be considered as easy inputs);

• total the total number of experiments for a given experiment-ware.

analysis.stat_table(
output='output/stat_table.tex',
commas_for_number=True,
dollars_for_number=True,

)

This table is given by calling the previous method with different parameters:

• par corresponds to the different values we want to give to the PARx column(s);

• output is the path to the output we want to produce (e.g., a LaTeX table).

30 Chapter 5. Analyze a Campaign in Metrics

Metrics, Release 1.2.6

experiment_ware count sum PAR1 PAR2 PAR10 common
count

com-
mon
sum

uncom-
mon
count

to-
tal

VBS 270 90388 90388 162388738388 65 405 205 300
PicatSAT 2019-09-12 246 1923771923773219771.35878e+0665 11093 181 300
Fun-sCOP hy-
brid+CryptoMiniSat
(2019-06-15)

209 2743232743234927232.23992e+0665 16472 144 300

Fun-sCOP or-
der+GlueMiniSat (2019-06-
15)

190 3200703200705840702.69607e+0665 14632 125 300

AbsCon 2019-07-23 168 3413873413876581873.19259e+0665 2805 103 300
choco-solver 2019-06-14 168 3698463698466866463.22105e+0665 7875 103 300
Concrete 3.10 165 3696153696156936153.28562e+0665 5182 100 300
choco-solver 2019-09-16 165 3722663722666962663.28827e+0665 7790 100 300
choco-solver 2019-09-20 165 3723163723166963163.28832e+0665 7754 100 300
Concrete 3.12.3 156 3862763862767318763.49668e+0665 7198 91 300
choco-solver 2019-09-24 149 3906343906347530343.65223e+0665 2570 84 300
BTD 19.07.01 135 4210874210878170873.98509e+0665 6718 70 300
cosoco 2 127 4484254484258636254.18522e+0665 6810 62 300

The Pivot Table

The pivot table allows to show exhaustively a precise variable between the set of experiment-wares (rows) and inputs
(cols).

analysis.pivot_table(
index='input',
columns='experiment_ware',
values='cpu_time',
output='output/pivot_table.tex',
commas_for_number=True,
dollars_for_number=True,

)#.head()

• index permits to precise what we want in the rows;

• columns permits to precise what we want in the cols;

• values permits to precise what we want to show in the cells as information crossing index and columns.

5.4. Draw Figures 31

Metrics, Release 1.2.6

input Ab-
sCon
2019-
07-
23

BTD
19.07.01

Con-
crete
3.10

Con-
crete
3.12.3

Fun-
sCOP
hy-
brid+CryptoMiniSat
(2019-
06-15)

Fun-
sCOP
or-
der+GlueMiniSat
(2019-
06-15)

Pi-
cat-
SAT
2019-
09-
12

VBS choco-
solver
2019-
06-
14

choco-
solver
2019-
09-
16

choco-
solver
2019-
09-
20

choco-
solver
2019-
09-
24

cosoco
2

XCSP17/AllInterval/AllInterval-
m1-
s1/AllInterval-
035.xml

3.653290.03120381.21469.8099311.6944 14.1492 228.6440.0312031.604241.510531.5242769.121914.919

XCSP17/AllInterval/AllInterval-
m1-
s1/AllInterval-
040.xml

3.771320.045375127.241189.84114.8833 14.6022 290.3280.0453751.688561.753391.5793846.75050.347661

XCSP17/Bibd/Bibd-
sc-
open/Bibd-
sc-85-
085-36-
36-15.xml

2520.042519.912520.162520.22520.44 2520.28 2520.07140.4422520.422520.662520.742520.05140.442

XCSP17/Bibd/Bibd-
sc-
stab1/Bibd-
sc-25-05-
01.xml

2520.12519.892520.112520.1245.027 43.2998 21.175121.17512520.631666.8 1680.89379.2652519.75

XCSP17/Bibd/Bibd-
sc-
stab1/Bibd-
sc-25-09-
03.xml

2520.112519.772520.12520.071689.17 2520.14 515.664137.506137.506260.369211.4212520.112520.02

The output is truncated.

The Contribution Table

This last table proposed by Wallet allowing to show the contribution of each experiment-ware:

• vbew simple corresponds to the number of times an experiment-ware has been selected in the VBEW;

• vbew d corresponds to the number of times an experiment-ware solves an instance d second(s) faster than all
other solvers;

• contribution corresponds to the case that an experiment-ware is the only one that has been able to solve an
input (a.k.a. state-of-the-art contribution).

As for the previous table, one just needs to call the following method:

analysis.remove_experiment_wares(['VBS']).contribution_table(
output='output/contribution_table.tex',
commas_for_number=True,
dollars_for_number=True,

)

NB: the previously created virtual experiment-ware VBS is removed to avoid errors in the computations.

32 Chapter 5. Analyze a Campaign in Metrics

Metrics, Release 1.2.6

deltas correspond to the list of vbew d we want to show in the table.

experiment_ware vbew sim-
ple

vbew
1s

vbew
10s

vbew
100s

contribu-
tion

BTD 19.07.01 76 28 11 1 0
cosoco 2 59 35 17 9 5
PicatSAT 2019-09-12 40 35 30 9 0
Fun-sCOP hybrid+CryptoMiniSat (2019-06-
15)

38 38 35 18 0

AbsCon 2019-07-23 19 19 15 1 0
Fun-sCOP order+GlueMiniSat (2019-06-15) 16 16 11 5 3
choco-solver 2019-09-24 14 14 6 1 0
choco-solver 2019-06-14 7 6 5 3 0
Concrete 3.10 6 6 5 1 0
Concrete 3.12.3 4 4 4 0 0
choco-solver 2019-09-16 3 3 2 1 0
choco-solver 2019-09-20 1 1 1 0 0

5.4.2 Static Plots

Wallet proposed many plots to show data. Static plots have some common parameters:

• figure_size: size of the figure to output (inches);

• title: the figure title;

• x_axis_name: the x-label title;

• y_axis_name: the y-label title;

• output: output path to save the figure or None;

• color_map: a map to force the color of each experiment-ware line;

• style_map: a map to force the line style of each experiment-ware line;

• title_font_*: the title font properties;

• label_font_*: the label font properties;

• latex_writing: if True, allows to write in LaTeX mode;

• logx: log scale for the x-axis;

• logy: log scale for the y-axis;

• [x|y]_[min|max]: set the limit of an axis, or -1 to take the default value of matplotlib;

• legend_location: the four legend positions (Position.RIGHT, Position.LEFT, Position.TOP, Posi-
tion.BOTTOM);

• legend_offset: a couple x and y as offsets for the current legend location;

• ncol_legend: number of columns for the legend (default: 1).

A full example of a static plots is given in this notebook.

5.4. Draw Figures 33

https://github.com/crillab/metrics/blob/master/example/example/xcsp-19/figures_from_analysis.ipynb

Metrics, Release 1.2.6

Static Cactus-Plot

A first kind of plots that allows to consider an overview of all the experiment-wares is the cactus plot. A cactus plot
considers all solved inputs of each experiment-ware. Each line in the plot represents an experiment-ware. Inputs are
ordered by solving time for each experiment-ware to build this figure: the x-axis corresponds to the rank of the solved
input and the y-axis to the time taken to solve the input, so that the righter the line, the better the solver. Note that we
can also cumulate the runtime of each solved inputs to get a smoother plot.

analysis.cactus_plot(
Cactus plot specificities
cumulated=False,
cactus_col='cpu_time',
show_marker=False,

Figure size
figure_size=(7, 3.5),

Titles
title='Cactus-plot',
x_axis_name='Number of solved inputs',
y_axis_name='Time',

Axis limits
x_min=50,
x_max=None,
y_min=None,
y_max=None,

Axis scaling
logx=False,
logy=False,

Legend parameters
legend_location=Position.RIGHT,
legend_offset=(0, 0),
ncol_legend=1,

Style mapping
color_map={

'VBS': '#000000'
},
style_map={

'VBS': LineType.DASH_DOT,
},

Title font styles
title_font_name='Helvetica',
title_font_color='#000000',
title_font_size=11,
title_font_weight=FontWeight.BOLD,

Label font styles
label_font_name='Helvetica',

(continues on next page)

34 Chapter 5. Analyze a Campaign in Metrics

Metrics, Release 1.2.6

(continued from previous page)

label_font_color='#000000',
label_font_size=11,
label_font_weight=FontWeight.BOLD,

Others
latex_writing=True,
output="output/cactus.svg",
dynamic=False

)

By default, the cactus plot draws its graphic by using the cpu_time of the results: you are free to change this behaviour
by replacing the cactus_col parameter. You can ask this plot to cumulate the runtime by giving cumulated=True.
We can show and hide markers thanks to show_marker parameter. The legend ordering corresponds to the decreasing
order of the number of solved inputs for each experiment-ware.

Static CDF-Plot

Equivalently to cactus plot, one may instead use the so-called Cumulative Distribution Function (CDF), which is well-
known when considering statistics. In this plot x-axis corresponds to the y-axis of the cactus-plot (time), and the y-axis
corresponds to the normalized number of solved inputs. A point on the line of the CDF may be interpreted as the
probability to solve an input given a time limit.

analysis.cdf_plot(
Cactus plot specificities
cumulated=False,
cdf_col='cpu_time',
show_marker=False,

Figure size
figure_size=(7, 3.5),

Titles
title='CDF-plot',
x_axis_name='Time',
y_axis_name='Number of solved inputs',

Axis limits
x_min=None,
x_max=None,
y_min=None,
y_max=None,

Axis scaling
logx=False,
logy=False,

Legend parameters
legend_location=Position.RIGHT,
legend_offset=(0, 0),
ncol_legend=1,

(continues on next page)

5.4. Draw Figures 35

Metrics, Release 1.2.6

(continued from previous page)

Style mapping
color_map={

'VBS': '#000000'
},
style_map={

'VBS': LineType.DASH_DOT,
},

Title font styles
title_font_name='Helvetica',
title_font_color='#000000',
title_font_size=11,
title_font_weight=FontWeight.BOLD,

Label font styles
label_font_name='Helvetica',
label_font_color='#000000',
label_font_size=11,
label_font_weight=FontWeight.BOLD,

Others
latex_writing=True,
output="output/cdf.svg",
dynamic=False

)

By default, the CDF plot draws its graphic by using the cpu_time of results: you are free to change this behaviour by
replacing the cdf_col parameter.

Static Box-Plot

In addition to cactus and CDF plots, one may consider box plots to get more detailed results about the runtime of
each solver. A box in such a plot represents the distribution of each experiment time of a given experiment-ware. In
particular, such plots allow to easily locate medians, quartiles and means for all experiment-wares in a single figure.
We can find a practical application of this plot in the case of randomized algorithms: it permits to visualize the variance
and to simply compare the effect of changing the random function seed for a given fixed solver configuration using it.

analysis.box_plot(
Box plot specificities
box_by='experiment_ware',
box_col='cpu_time',

Figure size
figure_size=(7, 7),

Titles
title='Box-plots',
x_axis_name=None,
y_axis_name=None,

(continues on next page)

36 Chapter 5. Analyze a Campaign in Metrics

Metrics, Release 1.2.6

(continued from previous page)

Axis limits
x_min=None,
x_max=None,

Axis scaling
logx=True,

Title font styles
title_font_name='Helvetica',
title_font_color='#000000',
title_font_size=11,
title_font_weight=FontWeight.BOLD,

Label font styles
label_font_name='Helvetica',
label_font_color='#000000',
label_font_size=11,
label_font_weight=FontWeight.BOLD,

Others
latex_writing=True,
output="output/box.svg",
dynamic=False

)

By default, the box plot draw its graphic by using the cpu_time of results: the user is free to change this behaviour by
replacing the box_col parameter. Also, by default, the box_by parameter is set to experiment_ware meaning that
each box represents an experiment_ware. The user may like to replace this by another column, for example the family
col, and explore family data distributions.

Static Scatter-Plot

Finally, to get a more detailed comparison of two experiment-wares, one can use scatter plots. Each axis in this plot
corresponds to an experiment-ware and displays its runtime (between 0 and the timeout). We can place each input
in the plot as a point corresponding to the time taken by both experiment-wares to solve this input. We can quickly
observe if there exists a trend for one experiment-ware or the other in terms of efficiency.

rename = {
"PicatSAT 2019-09-12": '$PicatSAT^{2019-09-12}$',
"Fun-sCOP+CryptoMiniSat": '$^{Fun-sCOP}/_{CryptoMiniSat}$'

}

a2 = analysis.add_variable(
'experiment_ware',
lambda x: x['experiment_ware'] if x['experiment_ware'] not in rename else rename[x[

→˓'experiment_ware']]
)

a2.scatter_plot(
(continues on next page)

5.4. Draw Figures 37

Metrics, Release 1.2.6

(continued from previous page)

"$PicatSAT^{2019-09-12}$",
"$^{Fun-sCOP}/_{CryptoMiniSat}$",
scatter_col="cpu_time",
title=None,

color_col="Checked answer",
x_min=1,
x_max=None,
y_min=1,
y_max=None,
logx=True,
logy=True,

figure_size=(7, 3.5),

legend_location=Position.TOP,
legend_offset=(0, -.1),
ncol_legend=2,

title_font_name='Helvetica',
title_font_color='#000000',
latex_writing=True,
output="output/scatter.svg",
dynamic=False

)

To draw a scatter-plot, we need to specify the experiment-wares on the x-axis and tge y-axis: xp_ware_x and
xp_ware_y. By default, the scatter plot draw its graphic by using the cpu_time of results: you are free to change
this behaviour by replacing the scatter_col parameter.

5.4.3 Dynamic Plots

Dynamic plots can be called by simply setting the dynamic parameter to True.

For example:

my_analysis.get_scatter_plot(dynamic=True)

5.5 Advanced Usage

For a more advanced usage, it is possible to get the original pandas Dataframe and to manipulate it thanks to this
instruction:

df = analysis.data_frame

Then simply follow pandas documentation or more concisely this pandas cheat sheet.

If the user keeps the minimal necessary information in the modified dataframe, a new Analysis could be instanciated
(with the optional success and consistency lambda checkers):

38 Chapter 5. Analyze a Campaign in Metrics

https://pandas.pydata.org/docs/
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

Metrics, Release 1.2.6

analysis = Analysis(data_frame=modified_df)

Every previous static tables correspond to pandas DataFrame and are thus manipulable.

5.6 Make an Optimality Analysis with OptiAnalysis

To make an optimality analysis, the user needs to parse and get back some needed information:

• the usual input, experiment_ware, cpu_time, timeout columns

• the additional columns:

– bound_list is the list of all found bounds during an experiment

– timestamp_list is the corresponding timestamp of each bound of bound_list

– objective is equal to min for minimization problem else max

– status informs the final status of the experiment (COMPLETE or INCOMPLETE)

– best_bound is the final found bound before the end of the resolution

5.6.1 Create an OptiAnalysis

Once the previous needed data are well filled out in the yaml file (an example here), we can build a first optimality
campaign as follows:

samp = [1,10,100,1000]
analysis = OptiAnalysis(input_file=SCALPEL_INPUT_FILE, samp=samp)

The parameter samp permits to explode the experiments in many timestamps that will permit to compute a score for
each of them. In the example we focus on four timestamps (1s, 10s, 100s, and 1000s): this is an exponential way of
observing results but a linear view is also interesting.

A default function default_explode is given by default to explode these data, but the advanced user could give
another one to well-matching with its own extracted data.

Once constructed, the analysis object has this next data-frame in memory:

5.6. Make an Optimality Analysis with OptiAnalysis 39

https://gitlab.com/productions-hwattez/solveurs-de-contraintes-autonomes/doctorat/experimentations/-/blob/main/Chap7/13_ace/config/metrics_scalpel.yml

Metrics, Release 1.2.6

We can observe that the same couple (input, experiment-ware) appears many times – for each sampling asked by
the user, visible through the timeout column. Each tuple composed of a specific (input, experiment-ware, timeout)
is composed of the best_bound at this time, the current status and the success column that inform about the actual
performances.

A full example here.

5.6.2 Compute scores

Now we have a well constructed analysis we can apply scoring methods thanks to the compute_scores method:

analysis.compute_scores(
score_map=DEFAULT_SCORE_METHODS,
default_solver=None

)

where:

• score_map is a dictionary of scoring methods with their names and the function to apply :

DEFAULT_SCORE_METHODS = {
'optimality': optimality_score,
'dominance': dominance_score,
'norm_bound': norm_bound_score,
'borda': borda_score

}

40 Chapter 5. Analyze a Campaign in Metrics

https://gitlab.com/productions-hwattez/solveurs-de-contraintes-autonomes/doctorat/experimentations/-/blob/main/Chap7/13_ace/1-logs_to_csv.ipynb

Metrics, Release 1.2.6

• default_solver is a default solver permitting to apply an additional operation (with additional data variables
in the final data-frame) permitting to compare scores to a default solver score.

By default the different methods inside DEFAULT_SCORE_METHODS will be applied on each observation:

• optimality is equal to 1 if the optimality is found/proved or 0

• dominance is equal to 1 if the current bound is equal to the best one for this input

• norm_bound is the normalization of the current bound, based on min and max values found for this input at the
current time

• borda is based on the Borda voting method by rating each solver for a given input; “Complete Scoring Procedure”
in this page

The advanced user could give its function following this schema:

def dominance_score(x, min_b, max_b, df):
return 1 if x['best_bound'] == max_b else 0

where:

• x is the current experiment/observation

• min_b is the worst found bound at the current time of the analysis for a given input

• max_b is the best found bound at the current time of the analysis for a given input

• df is the dataframe of the current analyzed input experiments (from which min_b and max_b are computed)

A full example here.

with a preview of created score columns:

5.6.3 Make figures

Finally, the user is now able to draw figures with the previously computed scores by giving, for example, col='borda':

analysis.opti_line_plot(
col='borda',
show_marker=False,

Figure size
figure_size=(5, 3),

Titles
(continues on next page)

5.6. Make an Optimality Analysis with OptiAnalysis 41

https://www.minizinc.org/challenge2020/rules2020.html
https://gitlab.com/productions-hwattez/solveurs-de-contraintes-autonomes/doctorat/experimentations/-/blob/main/Chap7/13_ace/2-make_agg_analysis.ipynb

Metrics, Release 1.2.6

(continued from previous page)

title='',
x_axis_name='Temps t',
y_axis_name='Borda score',

Axis limits
x_min=None,
x_max=None,
y_min=None,
y_max=None,

Axis scaling
logx=False,
logy=False,

Legend parameters
legend_location=Position.RIGHT,
legend_offset=None,
ncol_legend=1,

Style mapping
color_map=None,
style_map=None,

Title font styles
title_font_name='Helvetica',
title_font_color='#000000',
title_font_size=11,
title_font_weight=FontWeight.BOLD,

Label font styles
label_font_name='Helvetica',
label_font_color='#000000',
label_font_size=11,
label_font_weight=FontWeight.BOLD,

Others
latex_writing=True,
output=f'fig/borda_score.pdf',
dynamic=False

)

A full example is given here

42 Chapter 5. Analyze a Campaign in Metrics

https://gitlab.com/productions-hwattez/solveurs-de-contraintes-autonomes/doctorat/experimentations/-/blob/main/Chap7/13_ace/2A-plots.ipynb

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

43

	mETRICS - rEproducible sofTware peRformance analysIs in perfeCt Simplicity
	Authors
	Why Metrics?

	Installation
	API
	Core
	Builder
	Attribute Manager
	Builder
	Typing Strategy

	Reading a Campaign into Metrics
	Metadata of the Campaign
	Description of the Campaign Files
	Parsing a CSV File
	Parsing an “Evaluation” File
	Parsing a “Reverse” CSV File
	Parsing Raw Data from a File Hierarchy
	One File per Experiment
	Multiple Files per Experiment
	One Directory per Experiment

	Parsing Unsupported Formats
	Identifying Successful Experiments

	Description of the Data to Extract
	Extracting Data from Raw Files
	Extracting Data from File Names
	Extracting Data from Common Formats
	Mapping Data to Scalpel’s Expectations
	Adding Default Values

	Additional Information About the Campaign
	Description of the Experiment-Wares
	Description of the Inputs

	Analyze a Campaign in Metrics
	A Preview of What is Able to Do an Analysis
	Create/Import/Export a DecisionAnalysis
	The DecisionAnalysis Object
	Export and Import an Analysis

	Manipulate the Data from *Analysis
	Generate a New Information/Variable for Each Experiment
	Remove Variables from the Analysis
	Add an Analysis or a DataFrame to the current Analysis
	Add a Virtual Experiment-Ware
	Subset of *Analysis Rows
	By Filtering Inputs
	By Filtering Experiments

	Grouping the Analysis
	groupby Operator
	Pairs of Experiment-wares

	Draw Figures
	Static Tables
	Describe the Current Analysis
	Describe the Errors
	The Statistic Table
	The Pivot Table
	The Contribution Table

	Static Plots
	Static Cactus-Plot
	Static CDF-Plot
	Static Box-Plot
	Static Scatter-Plot

	Dynamic Plots

	Advanced Usage
	Make an Optimality Analysis with OptiAnalysis
	Create an OptiAnalysis
	Compute scores
	Make figures

	Indices and tables

